Skip to main content

Wannier basis

Introduction

Wannier functions are an alternative representation of Bloch states in terms of a localized basis set. Suppose we have NN atoms each separated by lattice constant aa in one dimension. Bloch states are indexed by the wave vector kk.

Hk=ϵkk\mathcal{H}\ket{k} = \epsilon_k \ket{k} xk=ψk(x)\braket{x | k} = \psi_k(x)

From the Bloch theorem, we have

ψk(x+a)=eikaψk(x)\psi_k(x + a) = e^{ika}\psi_k(x)

Now, we want to find an alternative representation in terms of Wannier basis n\ket{n}, where the states are labeled using site index (n = 1, 2, ..., N) instead of quantum number kk. Wannier basis set is complete and orthonormal.

k=n=1Nankn\ket{k} = \sum_{n=1}^N a_{nk} \ket{n} xk=nankxn\braket{x | k} = \sum_n a_{nk} \braket{x | n} ψk(x)=nankw(xna)\Rightarrow \psi_k(x) = \sum_n a_{nk} w(x - na)

where ww represents Wannier function. Apply translation operator on both sides:

Taψk(x)=nankTaw(xna) ψk(x+a)=nankw(x(n1)a) eikaψk(x)=na(n+1)kw(x+na) eikanankw(xna)=na(n+1)kw(x+na) eikanankw(xna)=na(n+1)kw(x+na)\begin{aligned} &T_a \psi_k(x) = \sum_n a_{nk} T_a w(x - na) \\ \Rightarrow~ & \psi_k(x + a) = \sum_n a_{nk} w\bigl(x - (n-1)a\bigr) \\ \Rightarrow~ & e^{ika} \psi_k(x) = \sum_n a_{(n+1)k} w(x + na) \\ \Rightarrow~ & e^{ika} \sum_n a_{nk} w(x - na) = \sum_n a_{(n+1)k} w(x + na) \\ \Rightarrow~ & e^{ika} \sum_n a_{nk} w(x - na) = \sum_n a_{(n+1)k} w(x + na) \\ \end{aligned}  a(n+1)k=ankeika=a(n1)kei2ka=a0kei(n+1)ka\begin{aligned} \therefore ~ a_{(n+1)k} &= a_{nk} e^{ika} \\ &= a_{(n-1)k}e^{i2ka} \\ &\qquad\cdots \\ &= a_{0 k}e^{i(n+1)ka} \end{aligned}

Since Bloch states are orthonormal:

kk=knankn=mnmamkankn=nank2=Na0k2=1\begin{aligned} \braket{k | k} &= \braket{k | \sum_n a_{nk} | n} \\ &= \sum_{mn} \braket{m | a_{mk}^* a_{nk} | n} \\ &= \sum_{n} | a_{nk} |^2 \\ &= N a_{0k}^2 \\ &= 1 \end{aligned} a0k=1N(up to a phase factor)\Rightarrow a_{0k} = \frac{1}{\sqrt{N}} \qquad\text{(up to a phase factor)} k=1Nneiknan\ket{k} = \frac{1}{\sqrt{N}} \sum_n e^{ikna} \ket{n}

While Bloch states represent the eigenstates of the single-particle Hamiltonian, WF (in general) cannot be assigned a single eigen-value, instead WFs are obtained as liner combination of Bloch states corresponding to different energies.

The Hamiltonian can now be written as:

H=mnmmHnn=nϵnnn+mn(tmn)mn\begin{aligned} \mathcal{H} &= \sum_m \sum_n \ket{m} \braket{m | \mathcal{H} | n} \bra{n} \\ &= \sum_n \epsilon_n \ket{n} \bra{n} + \sum_{m\neq n} (-t_{mn}) \ket{m} \bra{n} \end{aligned}

where ϵn\epsilon_n is onsite or diagonal term and tmnt_{mn} (> 0) is hopping or off-diagonal term.

Maximally Localized Wannier Function

The choice of Wannier function is not unique. One such option could be the set that maximizes localization. Two different sets of Wannier basis are connected via unitary transformation. MLWFs can be considered as a generalization of localized molecular orbitals (LMOs) to periodic systems.

Resources