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ABSTRACT: We report the study of anatase TiO2(001)-oriented
thin films grown by pulsed laser deposition on LaAlO3(001). A
combination of in situ and ex situ methods has been used to
address both the origin of the Ti3+-localized states and their
relationship with the structural and electronic properties on the
surface and the subsurface. Localized in-gap states are analyzed
using resonant X-ray photoelectron spectroscopy and are related
to the Ti3+ electronic configuration, homogeneously distributed
over the entire film thickness. We find that an increase in the
oxygen pressure corresponds to an increase in Ti3+ only in a well-
defined range of deposition pressure; outside this range, Ti3+ and
the strength of the in-gap states are reduced.
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1. INTRODUCTION

Titanium dioxide (TiO2) is one of the most widely studied
oxides because of its specific surface properties,1−3 making it a
good candidate for photocatalysis of water4 and for reducing
gas pollutants for air and water treatment,5,6 and its
photoinduced hydrophilic properties.7,8 Thin films of TiO2

are also the subject of interest for photovoltaic applications9 or
resistive switching memory devices.10,11 TiO2 is present in
nature in three different polymorphs: rutile, anatase, and
brookite. Although the most stable form under ambient
conditions is rutile, the quasi-metastable anatase TiO2 is
considered to be potentially more relevant for energy-related
applications.12−20

TiO2 anatase is an insulator with a band gap of 3.2 eV;21,22

however, changes in the concentration of oxygen vacancies
(TiO2−δ) influence the value of the band gap. Calculations have

shown that the oxygen vacancies act like donors in the n-type
semiconductor.23 This results in the formation of Ti3+-related
electronic states located in the band gap. Localized in-gap states
may overlap with the electronic states at the conduction band
minimum (CBM), eventually reducing the value of the gap.24

The mobility of charge carriers being determined by the defect
concentration, it is now well-understood that the carrier
dynamics is largely influenced by the space charge layer and
defect states on the surface and subsurface regions.25,26

Knowing that many TiO2 relevant properties are linked to
the origin and evolution of Ti3+ defect states, a deeper
understanding of the surface versus bulk properties and of
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surface chemistry is mandatory.27−31 In particular, low electron
mobility in devices often represents the bottleneck of overall
performances;16 thus, the formation of electronic in-gap states
and their homogeneous (or not) distribution over depth are
crucial parameters for future applications.32

Thin film growth technology33,34 now enables tuning the
growth conditions of TiO2 anatase films of different thicknesses
and oxygen contents. Recent reports have combined scanning
probe techniques35−37 and X-ray spectroscopy measure-
ments38−42 to investigate the origin and arrangement of Ti3+

defect states in films.
Here, we have analyzed the structural and electronic

arrangement of TiO2(001)-oriented anatase thin films with
different oxygen contents (TiO2−δ). First, a very accurate
characterization of our samples from the viewpoint of film
growth, crystal structure, and surface quality was performed.
Transmission electron microscopy (TEM) experiments pro-
vided evidence of regular oxygen vacancies shear planes
uniformly distributed over the entire film thickness in a highly
crystalline environment. Reflective high-energy electron
diffraction (RHEED), low-energy electron diffraction
(LEED), scanning tunneling microscopy (STM), and X-ray
diffraction (XRD) characterizations contribute to show that our
pulsed laser deposition (PLD)-grown samples, while hosting
point defects giving rise to in-gap states whose nature is
addressed in the following, show an excellent long-range order
and a very high overall quality. Depth-sensitive photoemission
spectroscopy (PES) results are able to (i) disentangle the
contribution of different Ti ionic states (Ti4+ and Ti3+), (ii)
monitor the (homogeneous) diffusion of Al from the substrate
through the film, and (iii) reveal the distribution of Ti3+ versus
depth. Resonant photoelectron spectroscopy (ResPES) with
polarized synchrotron radiation has been used to identify the
in-gap defect states as related to Ti states only. By exploiting
the PES sensitivity to the electronic state symmetry, we have
been able to demonstrate a direct correlation between Ti3+ ions
and the intensity of in-gap states. Contrary to what is generally
expected, our results demonstrate that a direct proportionality
between the oxygen deposition pressure and the amount of
Ti3+ holds only in a well-defined range of deposition pressure.
These findings suggest that not only the Ti3+ ions content can
modulate the population of the in-gap states but also a control
on such gap states is achievable. This acquired capability is a
strong basis for tailoring the electronic properties of TiO2
anatase thin films for applications in oxide electronics and
catalysis.

2. EXPERIMENTS
2.1. Growth and Structural Characterization. Samples of TiO2

were grown by PLD using a KrF excimer pulsed laser source (λ = 248
nm) at a typical energy density of about 2 J/cm2 and a typical laser
repetition rate of 1 Hz. The growth temperature was set to 700 °C,
and the target−substrate distance was about 5 cm. The typical
deposition rate was about 5 A/min. This growth rate is thus 1 order of
magnitude faster than the deposition rate described in the literature for
growing stoichiometric TiO2 samples.

37 A stoichiometric polycrystal-
line TiO2 target was used for the deposition process, and the oxygen
pressure was varied from 10−5 to 10−1 mbar. All samples were grown
with a nominal thickness of 50 nm. The growth process was monitored
in situ by RHEED, allowing the evaluation of the thin film surface
morphology during the growth process at any oxygen pressure (i.e., up
to 10−1 mbar). As a matter of fact, under the selected experimental
conditions, the plume stopping distance becomes shorter than the
target−substrate distance only for a pressure of several mbars, so that

the film deposition is possible in the entire explored pressure range.
To fully exploit such a capability, high-pressure RHEED systems were
used, allowing in situ monitoring of the deposition process at high
pressure.

The growth was performed on (001)-oriented LAO substrates, thus
ensuring an epitaxial growth along the same (001) axis of the TiO2
film. RHEED images of a typical TiO2/LAO film at different
deposition stages are shown in Figure 1. As demonstrated by the

analysis of the RHEED pattern, a pure two-dimensional (2D)
termination of the bare LAO substrate was observed. At the initial
stage of deposition, the RHEED-diffracted specular spot oscillated
according to a pure layer-by-layer growth mode to finally turn into a
2D step-flow growth mode. Such a transition, which has been also
observed in other complex perovskite materials,43 does not affect the
dimensionality of surface termination, thus preserving the high quality
of the final surface. Moreover, RHEED analysis also confirms the
appearance of the well-known (4 × 1) surface reconstruction,
characteristic of the (001) anatase TiO2 thin film (see arrows in the
inset of Figure 1).

The bulk crystallographic properties of the grown samples were
explored by means of XRD. Structural characterization was carried out
using a four-circle diffractometer with a Cu Kα radiation source. A
typical θ/2θ spectrum only shows the (00l) peaks, indicating the
preferential c-axis orientation of the film along the [001] substrate
crystallographic direction with no trace of impurity phases (not shown
here). The out-of-plane parameter has been measured to be 0.958 ±
0.001 nm, in good agreement with the expected c-axis parameter of the
relaxed TiO2 anatase. As expected by the very low lattice mismatch
with the LAO substrate (0.1%), the (001) anatase TiO2 thin films
grow fully matching with the in-plane lattice parameters of the
substrate.44 Reciprocal space map around the (0−13) LAO and (0−
17) TiO2 asymmetric reflections shows a perfect alignment of the
diffraction peak along the Qx-direction, proving the full in-plane lattice
matching between the film and the substrate (see Figure 2a).

The surface structural properties were studied using LEED and
STM techniques.

LEED investigations (Figure S1a) of TiO2 thin films always show an
ordered (4 × 1) + (1 × 4) reconstructed surface, independent of the
deposition process (i.e., oxygen content). Even though the origin of
such a surface reconstruction is still debated,45,46 its dependence upon
O stoichiometry on the surface of the film is clear.47 In situ STM was
conducted using an atomic resolution ultrahigh vacuum (UHV) STM
apparatus at the APE-IOM beamline at Elettra synchrotron facility in
Italy,48 immediately after the in situ growth of the samples in UHV.
STM topography (Figure S1b,c) shows good surface quality with
atomic steps along the main crystallographic axis [100] and [010] and

Figure 1. Typical RHEED oscillation during the TiO2 thin film growth
on the LaAlO3 (LAO) substrate at 10

−1 mbar. RHEED patterns were
recorded at the beginning (i.e., bare substrate) and at the end of the
deposition. In particular, the RHEED pattern at the end of the
deposition showing a (4 × 1) surface reconstruction is zoomed out.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.7b03181
ACS Appl. Mater. Interfaces 2017, 9, 23099−23106

23100

http://pubs.acs.org/doi/suppl/10.1021/acsami.7b03181/suppl_file/am7b03181_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.7b03181/suppl_file/am7b03181_si_001.pdf
http://dx.doi.org/10.1021/acsami.7b03181


periodic structures along the same axis with a periodicity of about 1.5
nm, confirming the (4 × 1) reconstruction (visible on the zoomed-in
image presented in Figure S1c).
The atomic structure of the TiO2 films was investigated using

HRTEM. In particular, by resorting to cross-sectional HRTEM, we
revealed the presence of ordered structural defects within the film and
determined their evolution across the growth direction. HRTEM
experiments were performed using a TEM/STEM JEOL 2010 UHR
field emission gun microscope operated at 200 kV with a measured
spherical aberration coefficient Cs = 0.47 ± 0.01 mm. A representative

HRTEM image of the TiO2/LAO cross-sectional area taken in the
[010] zone axis of the film is shown in Figure 2b. The TiO2 film has a
modulated structure with regular arrays of planar faults uniformly
distributed all along the film thickness. This specific structure has
already been described for titanium dioxide anatase films49,50 and
related to the existence of CS planes derived from the long-order
reorganization of oxygen vacancies within the film. As better
emphasized in the HRTEM displayed in the top inset of Figure 2b,
these planar faults exhibit a brighter contrast at the CS ridges with
respect to the host matrix and have a relative distance of about 1.3 nm.

Figure 2. (a) Reciprocal space map around the (0−13)-LAO and (0−17)-TiO2 asymmetric Bragg reflections. (b) High-resolution transmission
electron microscopy (HRTEM) image of a TiO2/LAO film grown under an oxygen pressure of 10−2 mbar. The image is taken in the [010] zone axis
of the film showing shear planes homogeneously distributed all over the film; in the HRTEM shown in the top inset, the 1.3 nm periodicity of the
crystallographic shear (CS) planes can be appreciated; in the lower inset is the diffractogram of the CS region, enlightening the presence of satellite
peaks in addition to the characteristic pattern of anatase TiO2.

Figure 3. (a) Hard X-ray photoelectron spectroscopy (HAXPES) overview scan of a TiO2/LAO sample with a photon energy of 6900 eV with all
peaks labeled. (b) Zoomed-out image of the Ti 2p peak showing the Ti3+ shoulder around 457 eV for the sample grown at 10−5 mbar of oxygen
pressure (red curve). (c) Al 1s X-ray photoelectron spectroscopy (XPS) peak measured at different photoelectron emission angles θ, namely, 5°
(blue), 40° (yellow), 60° (cyan), and 75° (green); schematics of the beam/sample/analyzer geometry is also reported. (d) Al 2s and Al 2p peaks
measured with a photon energy of 440 eV at the APE beamline (synchrotron Elettra) of the sample grown at different oxygen pressures (from 10−5

up to 10−1 mbar).
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The diffractogram of the CS region displayed in the lower inset of
Figure 2b shows the typical multiple-peak pattern of a TinO2n−1
superstructure originated by the long-range ordering of the CS planes
in the film.
2.2. Core-Level Spectroscopy Techniques. HAXPES experi-

ments have been performed at the GALAXIES beamline51 (SOLEIL
synchrotron facility, France) equipped with a Scienta EW4000.
HAXPES spectra were obtained at a photon energy of 2.5 keV using
a Si(111) monochromator giving an overall energy resolution of 300
meV and at a photon energy of 6.9 keV where the energy resolution
was up to 150 meV, thanks to the Si(333) monochromator.
In this case, samples were transferred ex situ, and no surface

preparation was performed. HAXPES measurements were recorded on
two (001)-oriented TiO2(001) anatase films grown by PLD on LAO
at two different oxygen pressures (10−1 and 10−5 mbar). In the
HAXPES regime, the high kinetic energy of the measured photo-
electrons guarantees specific bulk sensitivity, with a residual surface
sensitivity below a certain percentage.52 In the survey scan of a sample
grown at 10−5 mbar (Figure 3a), the contribution of surface
contaminants is severely reduced with the C 1s peak hardly visible,
despite no surface preparation. The survey spectrum shows all of the
expected peaks for TiO2. Some extra peaks (corresponding to Al 1s, Al
2s, and Al 2p) are visible (Figure 3a) both in hard and soft (more
surface sensitive) XPS (Figure 3c,d). This reveals the presence of Al
diffusion through the film up to the surface.53

To better understand the concentration of Al throughout the film,
we performed angular scans, varying the depth sensitivity through a
change in the detection angle (see the scheme on Figure 3c).
Measurements were recorded close to normal emission (5°), that is,
40°, 60°, and up to 75° emission angles. The intensity of the Al peak is
almost constant (standard deviation is in the order of 12%) with the
decrease in the probing depth, thus indicating that Al is
homogeneously distributed over the entire film for a fixed oxygen
deposition pressure. However, the Al content depends upon the
oxygen deposition pressure, as shown in Figure 3d, where soft X-ray
(hν = 440 eV) PES core level spectra of Al 2p and Al 2s are displayed.
Interestingly, the overall amount of Al in the investigated TiO2
samples is not constant, thus raising concern about a trivial Al
interdiffusion process from the LAO substrates triggered by the
substrate temperature during the growth, which was kept constant. As
will be discussed later in the manuscript, the amount of Al appears to
be directly correlated with the amount of Ti3+. This also raises

questions on the origin of the Ti3+ electronic state, which could result
from a combination of several factors, including interstitial Ti3+ from
shear planes, extra interdiffused Al3+, or oxygen vacancies.

The electronic configuration of Ti atoms in fully oxygenated TiO2 is
Ti4+. The presence of a small amount of atoms in the Ti3+

configuration, which is usually related to O vacancies, is revealed in
our samples by the small shoulder on the lower BE side of the main Ti
2p peak54−56 (see Figure 3b). This amount clearly differs for different
oxygen deposition pressures (e.g., samples grown at oxygen pressures
of 0.1 and 10−5 mbar). Interestingly, we also performed angular scans
on the Ti 2p peak to probe the distribution of the Ti3+ configuration
within the bulk of the film, revealing a homogeneous distribution of
this electronic state with the probing depth (see Figure S2).

2.3. ResPES and ARPES Experiments. Soft X-ray and ultraviolet
synchrotron radiation spectroscopies (XPS, resonant photoemission
spectroscopy, XAS, and ARPES) were carried out at the APE-IOM
beamline at Elettra.48 The measurements were recorded on the
samples that were transferred in situ directly after growth under UHV
conditions (base pressure < 2 × 10−10 mbar) to the two APE end-
stations. The energy resolution for XAS/ResPES experiments was
about 100 meV, though the absolute photon energy value was not
calibrated. All spectroscopic characterizations at APE were performed
on the very same samples.

For XAS experiments performed in the total electron yield mode,
the drain current from a highly transparent mesh was used to
normalize the measured signal with the incident photon flux. XAS of
the Ti L2,3 absorption edge of these samples confirmed the anatase
polymorph. A typical absorption spectrum is shown in Figure 4a (top).
The spectrum is divided into four main peaks: the first two peaks (458
and 460 eV) correspond to the L3 absorption edge and the last two
peaks (463 and 465 eV) correspond to the L2 edge. Both edges display
two peaks because of the crystal field splitting in TiO2.

57 The second
peak, around 460 eV, is particularly broad with a shoulder on the high-
energy side, typical of TiO2 anatase

58 (see arrows Figure 4a).
Resonant photoemission is performed by tuning the photon energy

from 450 to 480 eV and recording the photoelectron spectra of the VB
region (BE ranging from 15 eV to the Fermi edge FE). Given that the
photon energy matches the absorption edge of Ti, the VB
photoemission is enhanced in the Ti-derived electron states. We
referred to previous studies59,60 comparing anatase and rutile to rescale
in energy the XPS spectra and the XAS spectrum. Thus, all
photoemission spectra have been rescaled in energy, considering the

Figure 4. (a) X-ray absorption spectrum (red curve in the upper panel) and constant initial state (CIS) curve for the in-gap states at Eb = 1.8 eV as a
function of the exciting photon energy (magenta line points in the lower panel). (b) ResPES map of the valence band (VB) as a function of the
exciting photon energy; the X-ray absorption spectrum is also reported (red); and the energies at which the in-gap states show relative maxima (i.e.,
459 and 464 eV corresponding to L3 and L2, respectively) are reported on the map [the energy resolution for X-ray absorption spectroscopy (XAS)/
ResPES experiments was about 100 meV]. (c) Angular-resolved photoemission spectroscopy (ARPES) band dispersion of the TiO2 thin film (upper
panel) grown at 10−2 mbar, with a zoomed-out image of the in-gap state region (lower left) and its angular integrated dependence with respect to the
binding energy (BE, lower right).
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Fermi edge at the CBM [because the band gap of anatase is 3.2 eV, the
valence band minimum (VBM) is at a BE of 3.2 eV] and considering
the Ti 2p main peak at a BE of 456.2 eV with respect to the VBM. As
for the XAS spectrum, it has been rescaled considering the L3 first
sharp peak at 458 eV as comparable to the literature. In ResPES, both
XAS and XPS are measured at the same time ensuring total correlation
between the two scales and hence the correct resonant energies (see
Figure 4a,b).
The overall energy resolution (photon bandpass and electron

energy analyzer Omicron EA125) was set to 500 meV for XPS and
ResPES. The results are shown in Figure 4b. The VB resonant
photoemission shows extra electronic states located above the VBM
within the gap, confirming previous reports on both rutile61 and
anatase41,62

Our graph (Figure 4b) focuses on the region between VBM (BE =
3.2 eV) and FE (BE = 0). The XAS spectrum is added (red) with the
position of the L2 and L3 edges indicated as references. The in-gap
state, attributed in literature to the Ti3+ states due to O vacancies, is
situated around 1.25 eV, in agreement with previous reports.63,64 The
intensity evolution of the in-gap state as a function of the photon
energy [CIS curve, here in purple] is plotted together with the XAS
spectrum (Figure 4a), showing two resonant energies at the position
of the L3 edge (∼459 eV) and of the L2 one (∼464 eV). Because the
in-gap state originates from the defect states, the electronic
environment is different from bulk Ti atoms; thus, the CIS curve
does not reflect the same behavior as the XAS curve, as reported in the
literature.40,65

To probe the band dispersion of the in-gap states, ARPES
experiments were performed on the in situ transferred TiO2 sample.
These experiments were carried out with a Scienta DA30 hemi-
spherical electron energy and momentum analyzer with an overall 30°
angular acceptance, which allows performing the band mapping over
the extended areas of the Brillouin zone without sample rotation.
ARPES experiments were performed at room temperature on as-
grown TiO2 thin films at a resonant photon energy of 45−50 eV
(corresponding to the Ti 3p absorption edge41). The overall energy
resolution was set to 100 meV, and the angular resolution was set to
0.2°. Figure 4c shows the ARPES VB dispersion of the anatase TiO2

thin film, which is clearly visible in the 4−9 eV BE range. Although the
top panel shows apparently no intensity within the gap (0−4 eV), the
zoomed-in image in the bottom left panel (green rectangle in the top
panel) reveals the presence of the in-gap nondispersive electronic
defect state at BE = 1.5 eV, as deduced from the peak position in the
angle integrated spectrum (Figure 4c, bottom right).

3. RESULTS AND DISCUSSION

The in-gap states observed in ARPES show no dispersion,
which is a clear indication of their localized nature. We now
address the origin of these defect states.
We first compare the electronic properties of TiO2 thin films

grown at different oxygen pressures, which should result in
different amount of oxygen vacancies. Five anatase TiO2
samples were grown at different oxygen pressures ranging
from 10−1 to 10−5 mbar. The in-gap states visible at the L2 edge
energy (459 eV) and the Ti 2p photoelectron peak were
considered to compare the in-gap state intensity with the Ti3+

environment. After subtraction of the Shirley background, the
Ti 2p XPS experimental curves were fitted with six Gaussian−
Lorentzian functions for taking into account the two main
peaks (Ti3/2

4+ and Ti1/2
4+) and the four satellites typical of the

Ti 2p peak in titanates such as SrTiO3.
66 Two additional peaks

were added on the low-energy side at the foot of the two main
peaks to consider Ti3+ suboxides (see Figure 5a and more
details in Figure S3). The ratio of the area of the peaks Ti3/2

4+

(blue) and Ti3/2
3+ (red) is measured for the different samples

and displayed in Figure 5c (black curve) as a function of the
growth oxygen pressure. In the same way, the VB is measured
by photoemission using a photon energy of 464 eV
(corresponding to the L2 edge being the maximum of
resonance of the in-gap state). A similar scan measured off
resonance (450 eV) is subtracted to enhance the resonating
states in the VB (inset in Figure 5b). Three Gaussian−

Figure 5. (a) Example of fit of the Ti 2p XPS peak obtained with a photon energy of 610 eV showing the main Ti 2p3/2 environment (Ti
4+, blue) and

the suboxide environment (Ti3+, red) obtained for a sample grown with an oxygen pressure of 10−2 mbar. (b) Fit of the resonant VB with three
peaks in the VB (blue) and the in-gap state (red). The resonant VB is the difference between the VB at resonance (photon energy = 464 eV) and off
resonance (photon energy = 450 eV) (red and black curves, respectively, in the top right inset). (c) General evolution of the presence of the Ti3+

environment (shown by the ratio Ti3+/Ti4+ extracted from the Ti 2p XPS peak; black) and the in-gap state (extracted from the ratio between the
intensity of the in-gap electronic state and the total VB area; red) as a function of the growth oxygen pressure.
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Lorentzian functions were used to fit the VB (blue). Two
additional components were used to fit the in-gap state and the
background increase in between VBM and the defect state
(red). In the same way, the evolution of the ratio between the
in-gap state intensity (red fit) and the VB intensity (blue fit) is
taken into account as a function of the growth oxygen pressure
(red curve in Figure 5c). The main graph (Figure 5c) is thus a
direct comparison of the evolution of intensity of the Ti3+

electronic state and the intensity of the in-gap defect state. An
error bar of 10% for the Ti3+/Ti4+ ratio and 20% for the in-gap/
VB ratio have been added to take into account experimental or
data treatment uncertainties.
Results indicate a clear correlation between the amount of

Ti3+ component and the intensity of the defect state. At very
high oxygen pressure (10−1 mbar), the amount of detectable
Ti3+ component with respect to the Ti4+ component drops. In
the same way, we detect a very small intensity of the in-gap
state in the VB spectrum. On the contrary, a much higher
amount of the Ti3+ chemical environment and the in-gap state
is measured for the sample grown at an oxygen pressure of 10−2

mbar. Interestingly and contrary to what is generally
expected,67,68 at lower oxygen growth pressure, we do not
observe a continuous increase in the Ti3+ environment. Indeed,
we observed a continuous decrease in the Ti3+ chemical
environment correlated with a continuous decrease in the
intensity of the in-gap defect state from 10−2 up to 10−5 mbar.
Even though the oxygen background pressure is known to
affect the expansion dynamics of the plasma and the average
kinetic energy of the ablated species impinging on the substrate
in a nontrivial way,69 the nonmonotonic dependency of Ti3+

upon the oxygen deposition pressure is new because this is
generally used for tuning the oxygen vacancies amount in oxide
thin films. Taking into account that our results measure directly
the Ti3+ chemical state and not the amount of oxygen vacancies,
we assign the presence and evolution of the in-gap electronic
states as a direct signature of the Ti3+ chemical environment,
though we are not able to quantify the origin of such signature
(oxygen vacancies and/or Ti3+ interstitial23,28). It is however
clear from the results in Figure 5 that the oxygen growth
pressure does not have a direct proportionality with the oxygen
vacancies. Calculations23 on anatase and rutile indicate similar
activation energies for the two kinds of defects (O vacancies or
Ti interstitials) and that growth conditions (temperature and
oxygen pressure), as confirmed by present results, play an
important role.
Furthermore, XPS measurements recorded on all of these

samples at 900 eV (low photon energy and hence highly surface
sensitive) show the presence of peaks of Al 2s and 2p of
different intensities as a function of the sample growth pressure.
As a matter of fact, the intensity of the Al 2p peaks shows a
trend fully comparable with the Ti3+ component having the
highest shown intensity of Al when the Ti3+ component is
maximum (10−2 mbar, see Figures 3d and 5c) and a much
smaller intensity when the Ti3+ component is low (10−1 and
10−4 mbar). The presence of Al all along the film thickness up
to the surface with apparently a uniform dilution in the film is
compatible with the presence of these shear planes that act as
diffusion channels through the film50 (Figure 2b shows the
HRTEM image of the sample grown at an oxygen pressure of
10−2 mbar, showing the highest intensity of Ti3+ and the in-gap
electronic state in Figure 5c). In addition, shear planes could
also affect the presence of Ti3+ interstitials. All of these features
could explain the nontrivial correlation between the Ti3+

amount and the oxygen growth pressure. However, regardless
of the origin of the Ti3+ environments in the film, a clear
correlation has been established between Ti3+ and in-gap
electronic states.

4. CONCLUSIONS
We performed a complete structural and spectroscopic
characterization of PLD-grown TiO2(001)-oriented anatase
films. TiO2 is a crucial material for potential application in
photocatalysis, and the study of its electronic properties,
especially in its anatase form, is of major interest. Our data
affirm good crystalline quality of the films, relaxed lattice
parameter, smooth surface, and typical (1 × 4) surface
reconstruction. HRTEM experiments enlighten the nano-
structural homogeneity of the films, which consists of anatase
TiO2 defective phases characterized by CS planes originating
from the ordered arrays of oxygen vacancies. Selected TiO2 thin
films were characterized by a large range of in situ and ex situ
spectroscopic techniques. The presence of the in-gap electronic
state is confirmed by both ResPES and ARPES, and its localized
nature is confirmed by the absence of electronic dispersion.
ResPES, XPS, and HAXPES of anatase thin films grown at

different oxygen pressures show a clear correlation between the
in-gap electronic state and the intensity of the Ti3+ component.
However, no clear correlations between the oxygen growth
pressure and the presence of these defect states are observed.
The presence of Al diffusing from the LAO substrate

revealed by HAXPES and the presence of CS planes usually
associated with the oxygen vacancies demonstrate the bulk
rather than the surface character of these defect states.
The origin of the Ti3+ electronic states and their intensity

evolution regarding growth conditions have to be investigated
within the probable correlation between several parameters,
including oxygen vacancy amount, shear plane stabilization,
presence of Ti3+ interstitials, and Al diffusion. The disentangle-
ment of influence of these different parameters on the origin
and importance of the Ti3+ valence state would provide a deep
insight into the particular electronic properties of TiO2 anatase.
Our results refine the understanding of the defects at the

origin of the in-gap electronic state and open the way to a
better control of the specific surface properties of TiO2 anatase
through its growth conditions.
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