
1/14

Use systemd on Oracle Linux
docs.oracle.com/en/learn/use_systemd/

Note:

This tutorial is available in an Oracle-provided free lab environment.
It uses example values for Oracle Cloud Infrastructure credentials, tenancy, and
compartments. When completing your lab, substitute these values with ones
specific to your cloud environment.

Introduction

In this tutorial, you learn how to use the systemctl command line utility to manage and
view systemd units that are controlled by systemd. This tutorial is targeted at users of
Oracle Linux 8 or later.

systemd is the first process that starts at boot and is the final process to terminate at
system shutdown. systemd is primarily used to manage system services or processes
and system initialization at boot. However, systemd is also capable of handling many
other tasks and functions as well including event logging, device management, user login,
task scheduling, time synchronization and system boot. Many features in systemd are not
fully utilized as users may be more comfortable with alternate software for these purposes
or different Linux distributions may have preferred approaches to system configuration.

Different types of behaviour or functions within systemd are handled in systemd units. For
example, daemon processes or system services are run as service units, while system
states are usually defined as target units. Timer units can be defined to schedule tasks
similarly to how you might use the system cron service and a mount unit can be used to
configure a mount point similarly to how you might configure a mount point in the system
fstab.

systemd is used to manage system level processes and functions, but it is also capable
of managing processes running in user space. Users on a system can configure and
manage their own services and systemd can even be configured to allow these services
to continue running after the user has terminated their session.

Objectives

Discover different systemd unit types
Use systemd target units
Learn common systemctl command syntax
Create your own systemd timer unit in user space
Configure systemd to allow user space processes to run after logout

What Do You Need?

https://docs.oracle.com/en/learn/use_systemd/
https://luna.oracle.com/?ojr=lab%3Blid%3D8a060473-bff3-4c04-9799-eb944951007c

2/14

A system with Oracle Linux installed.

Explore systemd Unit Files

Note: When using the free lab environment, see Oracle Linux Lab Basics for
connection and other usage instructions.

1. Open a terminal and connect via ssh to the ol-server instance if not already
connected.

ssh oracle@<hostname or ip address>

https://luna.oracle.com/lab/c84a78db-4e92-4a58-86d1-a332bf47f99a/steps

3/14

2. Run the systemctl command to list all systemd units that are currently loaded by
systemd:

systemctl

Use the Space or PgDn keys on your keyboard to page through the output.

This command is equivalent to running:

systemctl list-units

The output shows all currently active configuration units that systemd is managing.
In the output you should notice that there are units named with different suffixes,
including units named with the ‘.device’, ‘.mount’,’.service’, ‘.target’ and ‘.timer’
suffixes.

Units are active in the sense that they are started, running, mounted or plugged in,
depending on their purpose. Units can be inactive in the sense that they are
stopped, unmounted or disconnected. If you want to see all units regardless of
whether they are active or not, you can run:

systemctl list-units --all

Output from these commands shows a selection of the different types of systemd
units:

automount: Provides automount capabilities for on-demand mounting of file
systems and parallelized boot-up.
mount: Controls mount points in the file system current date and time displays.
path: Can activate services when file system path information changes.
scope: Similar to service units but manages foreign processes instead of
starting them.
service: Starts and controls daemons and the processes they consist of.
slice: Used to group units that manage system processes, such as service
units and scope units, in the hierarchical cgroup tree for resource
management purposes.
socket: Encapsulates local interprocess communication (IPC) or network
sockets in the system, which are useful for socket-based activation.
target: Used to group units or to provide well-known synchronization points
during boot-up.
timer: Used to trigger activation of other units using timers. These provide an
alternative to tasks that may have been previously managed using the cron
service.
device: Exposes kernel devices in systemd and can also be used to
implement device-based activation.
swap: Encapsulates memory swap partitions or swap files.

4/14

3. Restrict the unit listing to a particular unit type by using the --type option.

Use the systemctl list-units --type services command to list the
currently active service units on your system.

systemctl list-units --type service

Run the same command again, but include the --all option to see all loaded
units, including those that are inactive, if any.

systemctl list-units --type service --all

You can repeat these commands for each of the service types that are available, so that
you restrict information only to the type that you are interested in working with at any time.

Work with systemd Target Units

Target units are used to group different units together to bring the system to a particular
state so that it is ready to function for a particular purpose.

1. List the available target units.

systemctl list-units --type target

Units can require other units to load or can be configured to conflict with particular
units. For example, the multi-user.target requires the basic.target to function
and it also conflicts with the rescue.service and the rescue.target units. Units
also specify other units that they want to load
to be able to function.

In this way, targets can be chained together to set up a particular state, but are also
modular enough to be reused to trigger an alternate state.

2. View the default target unit.

The default target unit defines the default system state after boot.

Use the systemctl get-default command to view which target unit is used
by default. The default target unit is represented by the
/etc/systemd/system/default.target file.

systemctl get-default

Use the ls -l command to list information about the
/etc/systemd/system/default.target file.

ls -l /etc/systemd/system/default.target

Note: The default.target file is a symbolic link to the current default
target unit file.

5/14

3. Change the default target unit.

Use the systemctl set-default command to change the default target unit
to the graphical.target unit.

systemctl set-default graphical.target

Use the ls –l command to confirm that the default.target file is now a
symbolic link to the graphical.target file.

ls -l /etc/systemd/system/default.target

Note: Changing the default target unit removes the existing
default.target symbolic link and re-creates the symbolic link, which
points to the new default target unit.

4. Explore a target for more information.

Use the systemctl show command to get more information about any specific
target.

systemctl show multi-user.target

The output shows all of the parameters for the target that you specify. Note
that you can identify the units that the target requires, wants and conflicts with
and that you can also see which units this target must run before and after.

Use the systemctl list-dependencies command to show the tree of
dependencies that are required or wanted for a particular target to reach its
state:

systemctl list-dependencies default.target

This command shows you all of the units that are started when you start the
default target. The chain of units is presented recursively in a tree that makes
it possible to fully assess what the target achieves when it starts. If you have
set the graphical.target as the default target, you can see that the system
wants to run the display-manager.service to load the graphical display but it
also runs the multi-user.target to do everything required prior to running
the graphical display.

Using systemctl to Enable, Disable and Mask Units

Units can be disabled or enabled and can also be masked so that they never run under
any circumstance. Some units are static in that they are always available, usually
because they are dependencies for other units to work. The systemctl list-units
command can only be used to show units that are active or inactive on the system.

6/14

1. List all of the units that are available on the system, along with their state:

systemctl list-unit-files

Many of the units that are available are static. Enabled units start at boot time.
Disabled units are units that are available on the system but which are not
configured to start at boot. Masked units are available on the system but have been
actively set to a state in which they cannot be started at all.

2. Use the systemctl status command to view detailed information about the nfs-
server.service unit.

systemctl status nfs-server.service

The systemctl command allows you to drop the .service extension when referring
to service units.

The status command indicates whether a unit is enabled, active, inactive, disabled
or masked.

For scripted solutions, systemctl provides short commands to output status in a
single line:

Use the systemctl is-active command to check if the nfs-server service
is running (active) or not running (inactive).

systemctl is-active nfs-server

Use the systemctl is-enabled command to check if the nfs-server service
is enabled or disabled. With the service enabled, the service starts on a
system reboot.

systemctl is-enabled nfs-server

7/14

3. Enable a service to start at boot.

Use the systemctl enable command to enable the nfs-server service.

sudo systemctl enable --now nfs-server

You must run the systemctl command with administrator privileges if the command
changes system state or configuration. You can use the --now option to additionally
start the service at the same time that you enable it.

Note: The command enables the service by creating a symbolic link for the
lowest-level system-state target at which the service starts. In the output, the
command created the symbolic link nfs-server.service for the multi-user
target.

Use the systemctl status command to confirm the nfs-server service is now
enabled and running.

systemctl status nfs-server

4. Disable and stop a service.

Use the systemctl disable command to disable the nfs-server service. Also
note that the systemctl disable command deletes the systemctl link for the
service.

sudo systemctl disable nfs-server

Use the systemctl stop command to stop the nfs-server service.

sudo systemctl stop nfs-server

You are able to combine these steps by using the --now option when you disable
the service.

8/14

5. Mask and unmask a unit.

In some cases, you may wish to disable units from starting at all. Typically, you may
do this if a particular unit conflicts with some other functionality on the system, or for
a policy reason.

Use the systemctl mask command to mask the nfs-server service:

sudo systemctl mask nfs-server

A symbolic link is created to ensure that the systemd unit configuration points to
/dev/null. This prevents the service from being enabled or started.

Confirm that you are unable to start the nfs-server unit while it is masked:

sudo systemctl start nfs-server

The service is unable to start and an error is returned to indicate that the service is
masked.

Unmask the unit to return it to its original state and to allow users to start or enable
the service.

sudo systemctl unmask nfs-server

Set up systemd for User Space Units

In general, systemd is used to manage units at a system level. Users require
administrator level access to the system to manage systemd units that are configured in
this way. In some environments and for some unit types, users may wish to use
systemd’s ability to run units within user space. For instance, users may wish to schedule
tasks using systemd’s timer unit capabilities; or users may want to run specific
applications or services as service units that should not require root level permission to
run.

systemd starts a systemd-user process for a user at login. Units located in the following
directories are processed in the following order for the user:

/usr/lib/systemd/user/: user space units provided by installed packages
$HOME/.local/share/systemd/user/: user space units from packages that are
installed in the home directory
/etc/systemd/user/: global system-wide user units that should run in user space
for all users
$HOME/.config/systemd/user/: user created units

You can indicate to systemd that you are working in user space by using the --user
option for any systemd command.

9/14

1. List currently available unit files for your user.

systemctl --user list-unit-files

Notice that the list of available units is significantly shorter than when you issued the
same command without the --user option.

The majority of these unit files, on a new system are located in
/usr/lib/systemd/user. List the files in this directory to view the units located
here:

ls -la /usr/lib/systemd/user/

2. Create a directory to host your own systemd unit files.

mkdir -p $HOME/.config/systemd/user

3. Create your own systemd service unit.

cat << EOF > $HOME/.config/systemd/user/uptime.service

[Unit]

Description="Logs system uptime and load average"

Wants=uptime.timer

[Service]

ExecStart=/usr/bin/uptime

[Install]

WantedBy=default.target

EOF

This service unit provides three configuration sections.

The Unit section provides a description for the unit and any requirements. In this
case, a Wants entry defines a weak requirement for a timer unit that does not exist
yet. Units that are listed as Wants entries are run if they are available but do not
prevent the parent unit from running if they are not found or fail to run.

The Service section defines the behavior of this specific service unit when it is run.
We rely on many default values for the available options here and only specify the
ExecStartline, which specifies the command that is run when the service is started.
In this case, the uptime command is run to log the system uptime and load values.

The Install section defines how the service should be installed onto the system
when it is enabled. Notably, the service is added as a service that is WantedBy the
‘default.target’. This would mean that the service is enabled as part of the default
target for this user.

10/14

4. Run the systemd unit and check its output.

Since you have added a new unit, it is usually a good idea to reload the systemd
configuration before attempting to run the service:

systemctl --user daemon-reload

Now start the new unit.

systemctl --user start uptime

Check that the command has run as expected. You can check that the service has
run by checking its status:

systemctl --user status uptime

Note: These commands use the --user option to run within user space.

To check the output from the uptime command that was run, use the journalctl
command to view the log and specify the tag option to view logs specific to the
command:

journalctl -t uptime

You can enable this service so that it starts when your user first logs into the
system.

systemctl --user enable uptime

Note that the service runs when the user first logs into the system. It does not start
automatically at system boot. Usually, services that run in user space terminate after
the user logs out or all user sessions are terminated. Enabling persistence for user
services is discussed later in this tutorial.

Work with systemd Timer Units

In this exercise, you build on the previous exercise to create and enable a timer unit to
regularly run another systemd unit at a particular time or interval. Timer units can be
defined at both the system level and the user level and can be used to define when
systemd should run another unit. Timer units provide granular control over scheduled
events and can act as an alternative to using the cron daemon to handle more subtle
configurations.

Many system services include timer units to control when they run. A great example of a
timer unit is included in the dnf-automatic package that can be used to keep your
system up to date when it performs regular dnf updates automatically. To see this in
action at a system level, install the package and enable the timer unit:

sudo dnf install -y dnf-automatic

sudo systemctl enable dnf-automatic.timer

11/14

You can view the unit file to see how this unit is configured:

cat /usr/lib/systemd/system/dnf-automatic.timer

Notable content in this unit, include a Wants line that expects the network-online.target
to be met. The OnCalendar entry in the Timer section of the configuration suggests that
this action runs daily at 06h00. Also of interest is the RandomizedDelaySec entry, which
can help prevent timer units from all firing at exactly the same time and pushing up
system load suddenly.

The example provided here is part of a much more complex set of units. To better
understand how timer units work, add a timer unit in user space to schedule the
uptime.service that you created in the previous exercise so that it runs at a regular
interval.

1. Create a timer unit file.

cat <<EOF > $HOME/.config/systemd/user/uptime.timer

[Unit]

Description=Timer for the uptime service that logs uptime

Requires=uptime.service

[Timer]

Unit=uptime.service

OnCalendar=*-*-* *:*:00

[Install]

WantedBy=timers.target

EOF

This file specifies that the uptime.service is required for this timer unit to run. This
is a much stronger requirement than anything defined in a Wants definition and the
unit does not run if the requirement is not satisfied.

The Timer section defines that it loads the uptime.service unit using an
OnCalendar entry. The OnCalendar entry functions similarly to the options in a
crontab definition but provides more granularity. In this case, the unit is defined to
run every minute at 00 seconds.

2. Since you have modified the systemd configuration, reload systemd daemons and
restart the uptime service so that it can pick up the new timer unit:

systemctl --user daemon-reload
systemctl --user restart uptime

3. List the units to check that the uptime.service and uptime.timer units are
running.

systemctl --user list-units

12/14

4. Monitor the log output in the journal to see the uptime output triggered by the uptime
service running every minute.

journalctl -f -t uptime

After a couple of minutes, several lines of output should have displayed.
If you were
paying close attention, you may notice that the uptime command does not always
trigger exactly on the minute. This is an intentional feature within systemd timer
functionality. Timer jobs are triggered with a randomizer that can allow a task to
trigger with up to a minute in delay. This helps to prevent timers from all triggering at
exactly the same time. You can force a timer to be incredibly accurate by setting the
accuracy to within a nanosecond of the scheduled event, by adding the following
configuration entry to the timer unit Timer section:

AccuracySec=1us

However, for most tasks, allowing for a degree of inaccuracy is sensible to prevent
tasks from running too synchronously.

You can use the Ctrl-C key combination to exit the journal when you have finished
monitoring.

By default, services and processes that are started and owned by a user are terminated
when the user logs out or when all sessions for the user have terminated. There are
several methods that you can use to change this default behavior within systemd. Two
options are explored here.

Use the loginctl command to enable systemd linger users

The loginctl command can be used to change the default behavior for a specific user
and to enable processes for that user to ‘linger’ after the user’s session is terminated.

1. Use the loginctl utility to enable linger for a specific user. In this instance, enable
the systemd linger behavior for the ‘oracle’ user:

sudo loginctl enable-linger oracle

2. To verify that the setting is applied, check for a file with the same name as the user
in the /var/lib/systemd/linger directory.

ls /var/lib/systemd/linger/oracle

The command should verify that the file exists.

Edit the systemd logind.conf file

Systemd manages user login events and provides a configuration file that can be edited
to set default behavior for different events related to the user’s session. This configuration
file is located at /etc/systemd/logind.conf.

13/14

1. Dump the contents of the existing configuration at /etc/systemd/logind.conf to
the screen to review:

cat /etc/systemd/logind.conf

The majority of options are commented out but display the compile time default
values. There are three options in this file that can control how systemd handles
processes running in user space when the user’s session terminates.

KillUserProcesses: this option can control whether or not user processes are
terminated by default when the session ends. Setting this option to ‘no’ allows
systemd to run user processes after any user logs out of the system.
KillExcludeUsers: If the KillUserProcesses option is enabled, this option
allows you to specify a space separated list of users for which systemd allows
processes to continue to run after the session terminates. Adding a username
to this list behaves similarly to adding a user to the systemd linger group using
the loginctl command.
KillOnlyUsers: If the KillUserProcesses option is disabled, this parameter
can be used to specify a space separated list of users for which processes
should be terminated after logout.

Video Demonstration

Video demonstrations on systemd are provided at https://www.youtube.com/watch?
v=9uDvnZKhU8A and https://www.youtube.com/watch?v=Tkxs-wfZrnw if you need more
information on working with the systemd on Oracle Linux 8.

Watch Video At: https://youtu.be/9uDvnZKhU8A

systemd System and Service Manager on Oracle Linux 8

Watch Video At: https://youtu.be/Tkxs-wfZrnw

More Information

Systemd documentation: https://systemd.io/
systemd(1) manual page
systemctl(1) manual page
journalctl(1) manual page
systemd.unit(5) manual page
logind.conf(5) manual page
Oracle Linux 8: Managing Core System Configuration
Oracle Linux Documentation

More Learning Resources

https://www.youtube.com/watch?v=9uDvnZKhU8A
https://www.youtube.com/watch?v=Tkxs-wfZrnw
https://youtu.be/9uDvnZKhU8A
https://www.youtube.com/watch?v=9uDvnZKhU8A
https://youtu.be/Tkxs-wfZrnw
https://systemd.io/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/osmanage/
https://docs.oracle.com/en/operating-systems/oracle-linux

14/14

Explore other labs on docs.oracle.com/learn or access more free learning content on the
Oracle Learning YouTube channel. Additionally, visit education.oracle.com/learning-
explorer to become an Oracle Learning Explorer.

For product documentation, visit Oracle Help Center.

Title and Copyright Information
Use systemd on Oracle Linux

F44185-06

May 2024

Copyright ©2021,
Oracle and/or its affiliates.

https://docs.oracle.com/learn
https://www.youtube.com/user/OracleLearning
https://education.oracle.com/learning-explorer
https://docs.oracle.com/
https://docs.oracle.com/pls/topic/lookup?ctx=en/legal&id=cpyr

