
1/7

HPC Docs: Slurm vs Moab/Torque
hpcc.umd.edu/hpcc/help/slurm-vs-moab.html

Slurm vs Moab/Torque on Deepthought HPC clusters

Intro and Overview: What is a scheduler?

A high performance computing (HPC) cluster (hereafter abbreviated HPCC) like
the Deepthought clusters consists of
many compute nodes, but at the same time
have many users submitting many jobs, often very large jobs. The HPCC
needs
a mechanism to distribute jobs across the nodes in a reasonable fashion; this
is the task of a program called a
scheduler. This is a complicated
tasks: the various jobs can have various requirements (e.g. CPU, memory, diskspace,
network transportation, etc.)
as well as differing priorities. And because we want to enable large parallel
jobs to run, the
scheduler needs to be able to reserve nodes for larger
jobs (i.e. if an user submits a job requiring 100 nodes, and only
90 nodes are
currently free, the scheduler might need to keep other jobs off the 90 free
nodes in order that the 100
node job might eventually run). The scheduler
must also account for nodes which are down, or have insufficient
resources
for a particular job, etc. As such, a resource manager is also needed
(which can either be integrated with the
scheduler or run as a separate program). The scheduler will also need to interface with an accounting system (which
also can be integrated into the scheduler)
to handle the charging of allocations for time used on the cluster.

As an user, you interact with the scheduler and/or resource manager whenever
you submit a job, or query on the status
of your jobs or the cluster as a
whole, or seek to manage your jobs.

The original Deepthought HPC cluster at the University of Maryland originally used
the Maui scheduler for scheduling
jobs, along with the Torque Resource
Manager and the Gold Allocation Manager. In 2009, we migrated to the Moab
scheduler, still keeping Torque
as our resource manager and Gold for allocation management. Moab derived from Maui,
and so the user interface
was mostly unchanged during this migration.

In the summer of 2014, the Deepthought2 cluster was inaugurated. The
scheduler for this cluster is a product called
Slurm (see e.g.
http://slurm.schedmd.com). This
program has many features which can better support the needs of our
HPCCs.
The original Deepthought HPCC was also migrated to slurm when the Moab license expired. Slurm includes its
own resource management and accounting system, so Torque and Gold are no longer used.

The following document is provided to help users make the transition from
the Maui/Moab/Torque commands for
interacting with the scheduler to the
Slurm equivalents, by giving Slurm equivalents of some common Moab/Torque
commands
and by discussing wrapper scripts which make some
Moab/Torque commands work with slurm.

Native slurm equivalents for common Moab/Torque commands

In this section, we show the Slurm equivalents of some common Moab/Torque
commands. You are encouraged to use
these commands and to Slurm-ify your job submission scripts, as this will bring you the most benefit from
the new
features that the Slurm scheduler supports. In most cases, the
Slurm versions are both more flexible and more rational
than the Moab/Torque
counterparts. But if you are really wish to continue using the old
commands , we do have
wrapper
scripts which will enable most basic Moab/Torque commands to continue
to work more or less as before.

The showq command

In a Moab/Torque environment, users will issue the showq
command to see the state of jobs running on the cluster. The
basic equivalent in Slurm is the squeue command.

To see a list of all jobs on the cluster, using Moab/Torque,
one would issue just the showq command. The Slurm
equivalent would be the squeue command:

login-1: squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 1243530 standard test2.sh payerle R 18:47:23 2 compute-b18-[2-3]

 1244127 standard slurm.sh kevin R 1:15:47 1 compute-b18-4

 1230562 standard test1.sh payerle PD 0:00 1 (Resources)

 1244242 standard test1.sh payerle PD 0:00 2 (Resources)

 1244095 standard slurm2.sh kevin PD 0:00 1 (ReqNodeNotAvail)

The main differences in the outputs are that:

https://hpcc.umd.edu/hpcc/help/slurm-vs-moab.html
http://slurm.schedmd.com/

2/7

Slurm by default provides the partition (i.e. queue in Moab/Torque terminology), the name of the job, and the
nodes the job is running on (or the reason the
job is not running if not running).
Slurm does not provide different sections for different run states. Instead, the run state is listed under the ST
(STate column), with the
following codes:

R for Running
PD for PenDing
TO for TimedOut
PR for PReempted
S for Suspended
CD for CompleteD
CA for CAncelled
F for FAILED
NF for jobs terminated due to Node Failure

Jobs in Slurm will continue to be listed for a while after they have
completed/failed, with appropriate status code
above.
Slurm by default lists the time used by the job, not remaining time.
Slurm by default lists the number of nodes requested/used by
the job, not the number of processes/tasks/cores.
Slurm does not by default list the time remaining for the job or the time
the job was submitted.

Note that slurm lists the nodes in an abbreviated form. And that as indicated, this is the default output format; Slurm is
very user configurable and you can specify exactly what you want outputted
with the -o option. There is also an -l
option
for more verbose output, and a -s option to show job step information.

Often you are only interested in your jobs, or the jobs or a specific user. You can add the option -u USERNAME to restrict
the output to jobs owned by USERNAME. You can also list only those
jobs in specific states with the -t STATELIST
option,
where STATELIST is a comma separated list of state codes (e.g.
R, CD, etc) to display.

The Slurm squeue command does not provide the status summary
line showing the nodes/processors on cluster and
percent usage. The slurm
sinfo can provide the equivalent information. By default, it
does not provide core counts, but
the output format is very flexible, and something like sinfo -o "%10P %10t %10D %20C" will show a list of
partitions,
and the node counts by state, along with the number of CPUs
Allocated, Idle, Offline, and Total.

Slurm also includes the sview which provides a graphical
view of the cluster status.

The pbsnodes command

In Moab/Torque, the pbsnodes command gives the state of
all or specific nodes in the cluster. We also have a
nodeusage
command which provides this information in a condensed, one-line per node
format.

Slurm also provides a number of methods to display the state of nodes.
The closest equivalent to the pbsnodes
command is probably
scontrol show node. You can specify specific nodes, or a
list of specific nodes to show
information about:

login-2> scontrol show node compute-b17-1

NodeName=compute-b17-1 Arch=x86_64 CoresPerSocket=10

 CPUAlloc=0 CPUErr=0 CPUTot=20 CPULoad=0.00 Features=(null)

 Gres=(null)

 NodeAddr=compute-b17-1 NodeHostName=compute-b17-1

 OS=Linux RealMemory=128000 AllocMem=0 Sockets=2 Boards=1

 State=IDLE ThreadsPerCore=1 TmpDisk=750000 Weight=1

 BootTime=2014-04-30T15:20:33 SlurmdStartTime=2014-05-02T08:37:08

 CurrentWatts=0 LowestJoules=0 ConsumedJoules=0

 ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

In place of nodeusage, the Slurm command sinfo -N
provides a similar summary.

The qstat and checkjob commands

The qstat command in Torque provides a one line status of all jobs in the cluster, or for specific jobs if job numbers
provided.
It also has a -f option to display more details in a multiline
format. The Moab checkjob command also
provides detailed information about a specific job.

The Slurm squeue command can provide the single line status
of jobs. To specify a single job, use the -j JOBNUMBER
option. It is discussed more above.

3/7

For more detailed job information, use the scontrol show job JOBNUMBER command, e.g.

login-2> scontrol show job 486

JobId=486 Name=test1.sh

 UserId=payerle(34676) GroupId=glue-staff(8675)

 Priority=33 Account=test QOS=normal

 JobState=PENDING Reason=Priority Dependency=(null)

 Requeue=1 Restarts=0 BatchFlag=1 ExitCode=0:0

 RunTime=00:00:00 TimeLimit=00:03:00 TimeMin=N/A

 SubmitTime=2014-05-06T11:20:20 EligibleTime=2014-05-06T11:20:20

 StartTime=Unknown EndTime=Unknown

 PreemptTime=None SuspendTime=None SecsPreSuspend=0

 Partition=standard AllocNode:Sid=pippin:31236

 ReqNodeList=(null) ExcNodeList=(null)

 NodeList=(null)

 NumNodes=2 NumCPUs=8 CPUs/Task=1 ReqS:C:T=*:*:*

 MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0

 Features=(null) Gres=(null) Reservation=(null)

 Shared=OK Contiguous=0 Licenses=(null) Network=(null)

 Command=/export/home/pippin/payerle/slurm-tests/test1.sh

 WorkDir=/home/pippin/payerle/slurm-tests

The qsub command

Submitting jobs to the scheduling system is probably the most important
part of the scheduling system, and because
you need to be able to express
the requirements of your job so that it can be properly scheduled, is also
the most
complicated. The Torque command is qsub; the
Slurm equivalent is sbatch. But the complicated part is
in the
parameters to specify the job requirements.

Both Torque/Moab and Slurm allow you to specify arguments to qsub/sbatch, respectively, either on the command
line
or as comments in the script file. In Torque/Moab environments, the
latter are in lines that begin #PBS . For Slurm, the
lines
should begin #SBATCH . In either case, they should occur before
any executable line in the script.

The following table translates some of the more commonly used options
for qsub to their sbatch equivalents:

qsub to sbatch translation

To specify the: qsub option sbatch option Comments

Queue/partition -q QUEUENAME -p QUEUENAME Torque "queues" are called
"partitions" in slurm.
Note: the partition/queue
structure has been
simplified,
see below.

Account/allocation

to be charged

-A ACCOUNTNAME -A
ACCOUNTNAME

Gold uses "allocations", Slurm
uses "accounts"

Number of nodes/
cores requested

-l nodes=NUMBERCORES -n
NUMBERCORES

See below

-l
nodes=NUMBERNODES:CORESPERNODE

-N
NUMBERNODES
-n
NUMBERCORES

Wallclock limit -l walltime=TIMELIMIT -t TIMELIMIT TIMELIMIT should have form
of
HOURS:MINUTES:SECONDS.
Slurm supports some other
time formats as well.

Memory
requirements

-l mem=MEMORYmb --mem=MEMORY Moab: This is Total memory
used by job

Slurm: This is memory per
node

-l pmem=MEMORYmb --mem-per-
cpu=MEMORY

This is per CPU/core.
MEMORY in MB

4/7

Stdout file -o FILENAME -o FILENAME This will combine stdout/stderr
on slurm if -e not given also

Stderr file -e FILENAME -e FILENAME This will combine stderr/stdout
on slurm if -o not given also

Combining
stdout/stderr

-j oe -o OUTFILE

and no -eoption

stdout and stderr merged to
stdout/OUTFILE

-j eo -e ERRFILE

and no -ooption

stdout and stderr merged to
stderr/ERRFILE

Email address -M EMAILADDR --mail-
user=EMAILADDR

Email options -mb --mail-
type=BEGIN

Send email when job starts

-me --mail-type=END Send email when job ends

-mbe --mail-
type=BEGIN

--mail-type=END

Send email when job starts
and ends

Job name -N NAME --job-name=NAME

Working directory -d DIR --workdir=DIR

The partition/queue structure has been simplified with the transition
to Slurm, and in most cases you will not need to
specify a partition.

The node/cpu specifications with Moab/Torque are complicated and counter-intuitive. -l nodes=N< requests N
CORES,
and -l nodes=N:ppn=M
requests N sets of M cores, but two or more sets could
end up on the same node.

Slurm's node specification parameters are more straightforward, but as
such do not cleanly map onto the Moab/Torque
conventions. You can request
a number of tasks, and by default Slurm assigns a distinct core
for each task, with the --
ntasks=T or
-n T option. You can also request a number of nodes,
with the --nodes=N or -N N option.
In the node
specification, N can either be a single number, e.g.
-N 4 requests 4 nodes, or a range, e.g. -N 1-4
requests between 1
and 4 nodes (inclusive).

You can specify both a task and node count, in which case the scheduler
will only assign you a set of nodes meeting
both criteria, or you can specify
either one alone, in which case only the single criterion is considered.
Slurm also has
many other options for specifying node/CPU/core requirements
which are not matched by Moab/Torque.

Batch Job environment

In addition to specifying the environment, there is also the matter of
the scheduler telling the job about what resources
were allocated to it.
This is generally done via environmental variables. This is harder to
emulate, but some basic
correlations are given below:

Moab/Torque to Slurm Environment Correlations

Function Moab/Torque Variable Slurm Variable Comments

Job ID $PBS_JOBID $SLURM_JOBID

Job Name $PBS_JOBNAME $SLURM_JOB_NAME

Submit Directory $PBS_O_WORKDIR $SLURM_SUBMIT_DIR

Node List cat $PBS_NODEFILE $SLURM_JOB_NODELIST See below

Host submitted from $PBS_O_HOST $SLURM_SUBMIT_HOST

Number of nodes allocated to job $PBS_NUM_NODES $SLURM_JOB_NUM_NODES

Number of cores/node $PBS_NUM_PPN $SLURM_CPUS_ON_NODE

Total number of cores for job??? $PBS_NP $SLURM_NTASKS Uncertain about these

https://hpcc.umd.edu/hpcc/help/jobs.html#queues

5/7

Index to node running on

relative to nodes assigned to job

$PBS_O_NODENUM $SLURM_NODEID

Index to core running on

within node

$PBS_O_VNODENUM $SLURM_LOCALID

Index to task relative to job $PBS_O_TASKNUM $SLURM_PROCID + 1

In addition, Torque/Moab defines the variables PBS_O_XXXX, where XXXX is one
of:

HOME

LANG

LOGNAME

PATH

MAIL

SHELL

TZ

to the value of the corresponding XXXX environmental
variable at the time the qsub command was run. Slurm does
not
set corresponding variables, but for our environment, these should generally be the same as the value of the
XXXX
variable at the time the job is running.
The list of nodes allocated to a job is handled quite differently between
the two schedulers. Moab/Torque returns this in
a file, with one line listing
the hostname for every core assigned, and sets the variable
$PBS_NODEFILE to the name of
that file.

Slurm returns the actual list of nodes, in a compact notation with numeric
ranges in square brackets, in the actual
$SLURM_JOB_NODELIST
environmental variable.

For OpenMPI users, the mpirun command should be able to
handle either format, so you do not need to worry about
this. For other users,
this might be more of an issue. To assist with this, there is an utility
generate_pbs_nodefile which
will generate a Torque/Moab-compatible
$PBS_NODEFILE file from the $SLURM_JOB_NODELIST.
You would use it like (for
Csh style shells)

#!/bin/tcsh

#PBS -l nodes=12

setenv PBS_NODEFILE `generate_pbs_nodefile`

#Rest of your code below

...

For bourne style shells, the equivalent would be

#!/bin/sh

#PBS -l nodes=12

PBS_NODEFILE=`generate_pbs_nodefile`

export PBS_NODEFILE

#Rest of your code below

...

If you need more than just the PBS_NODEFILE, a small script exists
that attempts to set all the Torque/Moab variables
above to the best
values it can, including PBS_NODEFILE. To use it, you must source the
script (Do NOT run as a
program as it needs to set environmental variables
for you) near the top of your script, for C-shell style scripts it would
be:

#!/bin/tcsh

#PBS -l nodes=12

source /usr/local/slurm/scripts/slurm2pbs_environment.csh

#Rest of your code below

...

For bourne style shells, the equivalent would be

6/7

#!/bin/sh

#PBS -l nodes=12

. /usr/local/slurm/scripts/slurm2pbs_environment.sh

#Rest of your code below

...

The qdel command

Sometimes one needs to kill a job. Under Torque/Moab one would use
the qdel or canceljob commands. The
equivalent
command under Slurm is scancel.

login-1> scancel -i 122488

Cancel job_id=122488 name=test1.sh partition=standard [y/n]? y

login-1>

The showstart command

The showstart command under Moab/Torque shows the scheduler's
estimate of when a pending/idle job will start
running. It is, of course, just the scheduler's best estimate, given current conditions, and the actual
time a job starts
might be earlier or later than that depending on factors such
as the behavior of currently running jobs, the submission of
new jobs, and
hardware issues, etc.

This information is available under Slurm with the squeue
command, although it is not shown by default. You need to
specify the
%S field in the output format option, e.g.

login-1> squeue -o "%.9i %.9P %.8j %.8u %.2t %.10M %.6D %S"

 JOBID PARTITION NAME USER ST TIME NODES START_TIME

 473 standard test1.sh payerle PD 0:00 4 2014-05-08T12:44:34

 479 standard test1.sh kevin PD 0:00 4 N/A

 489 standard tptest1. payerle PD 0:00 2 N/A

The mybalance and gbalance commands

It is important to keep track of the available SUs (CPU-hours) in your
accounts. Under Gold, you would due this with the
mybalance
and/or gbalance commands.

You can obtain the same information under Slurm with the
sbank command. In particular:

login-1> sbank balance statement -u

User Usage | Account Usage | Account Limit Available (CPU hrs)

---------- ----------- + ---------------- ----------- + ------------- -----------

payerle 5 | TEST 99 | 1,000 901

payerle 1 | TPTEST 1 | 2 1

Without the -u, it will show usage for other users in accounts
which you belong to also. All numbers are in SU (CPU-
hours); while the
accounting system tracks things to the CPU-second, all output is rounded to
the nearest CPU-hour
(SU). The above shows user payerle as having access to two accounts:

Account TEST with 1000 SU limit, of which he used 5 SU and
others in the account used 94 SU (for a total of 99
SU used), leaving 901 SU
available for use.
Account TPTEST with a 2 SU limit, of which he used 1 SU leaving
1 SU available for use.

The qpeek command

There is a contributed script for Moab/Torque called qpeek
that allows one to see the partial output of a job while it is still
running.
This is not needed on Slurm, as the standard output/error are written to
the files you specified in real time, and
these can just be viewed.

Wrappers for Moab commands

In order to make the transition from Moab/Torque to Slurm as minimally
inconvenient as possible, we have installed a
number of wrapper scripts
for Slurm which are named after and behave much like the Moab/Torque commands
you are
used to. These are intended to smooth the transition, and we
encourage you to over time start using native Slurm
commands instead, as
a major motivation for the migration of schedulers is that Slurm has many
features that are just
not present in Moab/Torque, and the wrapper scripts
will not provide access to those features. Also, the wrapper scripts

7/7

are
NOT perfect equivalents; they should be able to handle many basic cases, but
not always perfectly, and some
cases they just will not handle. Although
we have no plans at this time to remove the wrapper scripts at any point in
the
future, our support policy is one of "If it works, great. If it doesn't
work, use native Slurm commands."

In this section we discuss some of the wrapper scripts, and list any
known quirks, etc. with them. For commands that
display information to
the user, we do not expect the format of the information to even closely
match that of the original
Moab/Torque commands, just that the same basic
information is available. Those differences will be glossed over below
unless there is a specific item of confusion, etc. in the reading the two
outputs.

Wrappers exist for the following commands:

pbsnodes

qalter

qdel

qhold

qrerun

qrls

qstat

qsub

showq

Most of the above are quite straight-forward. showq takes somewhat different arguments than the original Moab/Torque
version;
the main difference is that -u displays your jobs only, and
does NOT take an username as argument. The -U
USERNAME option is the equivalent of the orginal Moab/Torque -u option,
displaying only jobs for the specified user.

The qsub wrapper is probably the most complex, and the
one which exposes the differences between Moab/Torque and
Slurm the most.
Most of the basic options should work, and most resource requirements lists should be translated to
roughly equivalent resource requirements in Slurm.

One major issue is that although the qsub tries to correctly
translate your arguments to qsub (either on the command
line or
in #PBS comment lines) into the Slurm sbatch
equivalents, it does NOT provide the equivalent environment
to
your script that the Moab/Torque versions do. In particular, Moab/Torque
creates a file with the list of nodes assigned to
your job and puts the
path to the file in $PBS_NODEFILE. Slurm does not do that
(Slurm provides essentially the same
information, but by other means). This is discussed in some more detail elsewhere.

The main point is that if your script is relying on $PBS_NODEFILE or other environmental
variables set by Moab/Torque, it
probably won't be happy without some modifications. We have attempted to assist with some scripts that can
be
sourced at the top of your script file to try to mimic the Moab/Torque
job script environment. To use in a C-shell style
shell, you would do
something like:

#!/bin/tcsh

#PBS -l nodes=12

source /usr/local/slurm/scripts/slurm2pbs_environment.csh

#Rest of your code below

...

For bourne style shells, the equivalent would be

#!/bin/sh

#PBS -l nodes=12

. /usr/local/slurm/scripts/slurm2pbs_environment.sh

#Rest of your code below

...

Back to Top

