
Use Modulefiles with Linux*

There are two methods for configuring your environment in Linux*:

Use modulefiles, as described on this page

Use a setvars.sh configuration file

Most of the component tool folders contain one or more modulefile scripts that configure the

environment variables needed by that component to support development work. Modulefiles are

an alternative to using the setvars.sh script to set up the development environment. Because

modulefiles do not support arguments, multiple modulefiles are available for oneAPI tools and

libraries that support multiple configurations (such as a 32-bit configuration and a 64-bit

configuration).

NOTE:

The modulefiles provided with the Intel oneAPI toolkits are compatible with the Tcl Environment

Modules (Tmod) and Lua Environment Modules (Lmod). The following minimum versions are

supported:

Tmod 3.2.10 (compiler modulefile requires 4.1, see below)

Tcl version 8.4

Lmod version 8.2.10

Test which version is installed on your system using the following command:

module --version

Each modulefile automatically verifies the Tcl version on your system when it runs.

If your modulefile version is not supported, a workaround may be possible. See Using

Environment Modules with Intel Development Tools for more details.

As of the oneAPI 2021.4 release you can use the icc modulefile to setup the icc and ifort

compilers if you are using version 3.2.10 of the Tcl Environment Modules. A future oneAPI release

will resolve the support for the compiler modulefile.

The oneAPI modulefile scripts are located in a modulefiles directory inside each component folder

(similar to how the individual vars scripts are located). For example, in a default installation, the

ipp modulefiles script(s) are in the /opt/intel/ipp/latest/modulefiles/ directory.

Due to how oneAPI component folders are organized on the disk, it can be difficult to use the

oneAPI modulefiles directly where they are installed. Therefore, a special modulefiles-setup.sh

script is provided in the oneAPI installation folder to make it easier to work with the oneAPI

https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2023-0/use-a-config-file-for-setvars-sh-on-linux-or-macos.html#GUID-30411BDE-1BD7-4F13-86B9-8FC9B7CC123D
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2023-0/use-a-config-file-for-setvars-sh-on-linux-or-macos.html#GUID-30411BDE-1BD7-4F13-86B9-8FC9B7CC123D
https://www.intel.com/content/www/us/en/developer/articles/technical/using-environment-modules-with-the-intel-development-tools.html
https://www.intel.com/content/www/us/en/developer/articles/technical/using-environment-modules-with-the-intel-development-tools.html
https://www.intel.com/content/www/us/en/developer/articles/technical/using-environment-modules-with-the-intel-development-tools.html
https://www.intel.com/content/www/us/en/developer/articles/technical/using-environment-modules-with-the-intel-development-tools.html

modulefiles. In a default installation, that setup script is located here: /opt/intel/oneapi

/modulefiles-setup.sh

The modulefiles-setup.sh script locates all modulefile scripts that are part of your oneAPI

installation and organizes them into a single directory of versioned modulefiles scripts.

Each of these versioned modulefiles scripts is a symlink that points to the modulefiles located by

the modulefiles-setup.sh script. Each component folder includes (at minimum) a “latest”

version modulefile that will be selected, by default, when loading a modulefile without specifying a

version label. If you use the --ignore-latest option when running the modulefiles-setup.sh

script, the modulefile with the higest semver version will be loaded if no version is specified by the

module_load command.

Creating the modulefiles Directory

Run the modulefiles-setup.sh script.

NOTE:

By default, the modulefiles-setup.sh script creates a folder named modulefiles in the oneAPI

toolkit installation folder. If your oneAPI installation folder is not writeable, use the --output-

dir=<path-to-folder> option to create the modulefiles folder in a writeable location. Run

modulefiles-setup.sh --help for more information about this and other modulefiles-setup.sh

script options.

Running the modulefiles-setup.sh script creates the modulefiles output folder, which is

organized like the following example (the precise list of modulefiles depends on your installation).

In this example there is one modulefile for configuring the Intel® Advisor environment and two

modulefiles for configuring the compiler environment (the compiler modulefile configures the

environment for all Intel compilers). If you follow the latest symlinks, they point to the highest

version modulefile, per semver rules.

Update your MODULEFILESPATH to include to the modulefiles output folder that was created

by the modulefiles-setup.sh script or run the moduleuse <folder_name> command.

Installing the Tcl Modulefiles Environment onto Your System

The instructions below will help you quickly get started with the Environment Modules utility on

Ubuntu*. For full details regarding installation and configuration of the module utility, see

http://modules.sourceforge.net/.

$ sudo apt update

$ sudo apt install tcl

$ sudo apt install environment-modules

Confirm that the local copy of tclsh is new enough (see the beginning of this page for a list of

supported versions):

$ echo 'puts [info patchlevel] ; exit 0' | tclsh

8.6.8

To test the module installation, initialize the module alias.

$ source /usr/share/modules/init/sh

$ module

NOTE:

Initialization of the Modulefiles environment in POSIX-compatible shells should work with the

source command shown above. Shell-specific init scripts are provided in the /usr/share

/modules/init/ folder. See that folder and the initialization section in man module for more

details.

Source the module alias init script (.../modules/init/sh) in a global or local startup script to

ensure the module command is always available. At this point, the system should be ready to use

the module command as shown in the following section.

Getting Started with the modulefiles-setup.sh Script

The following example assumes you have:

installed tclsh on to the Linux development system

installed the Environment Modules utility (i.e., module) onto the system

http://modules.sourceforge.net/
http://modules.sourceforge.net/

sourced the .../modules/init/sh (or equivalent) module init command

installed the oneAPI toolkits required for your oneAPI development

$ cd <oneapi-root-folder> # cd to the oneapi_root install directory

$./modulefiles-setup.sh # run the modulefiles setup script

$ module use modulefiles # use the modulefiles folder created above

$ module avail # will show tbb/X.Y, etc.

$ module load tbb # loads tbb/X.Y module

$ module list # should list the tbb/X.Y module you just loaded

$ module unload tbb # removes tbb/X.Y changes from the environment

$ module list # should no longer list the tbb/X.Y env var module

Before the unload step, use the env command to inspect the environment and look for the changes

that were made by the modulefile you loaded. For example, if you loaded the tbb modulefile, the

command will show you some of the env changes made by that modulefile (inspect the

modulefile to see all of the changes it will make):

$ env | grep -i "intel"

NOTE:

A modulefile is a script, but it does not need to have the ‘x’ (executable) permission set, because it

is loaded and interpreted by the “module” interpreter that is installed and maintained by the end-

user. Installation of the oneAPI toolkits do not include the modulefile interpreter. It must be

installed separately. Likewise, modulefiles do not require that the ‘w’ permission be set, but they

must be readable (ideally, the ‘r’ permission is set for all users).

Versioning

The oneAPI toolkit installer uses version folders to allow oneAPI tools and libraries to exist in a

side-by-side layout. These versioned component folders are used by the modulefiles-setup.sh

script to create the versioned modulefiles. The script organizes the symbolic links it creates in the

modulefiles output folder as <modulefile-name>/version, so that each respective modulefile

can be referenced by version when using the module command.

$ module avail

---------------- modulefiles -----------------

ipp/1.1 ipp/1.2 compiler/1.0 compiler32/1.0

Multiple modulefiles

A tool or library may provide multiple modulefiles within its modulefiles folder. Each becomes

a loadable module. They will be assigned a version per the component folder from which they were

extracted.

Understanding How the modulefiles are Written when using oneAPI

Symbolic links are used by the modulefiles-setup.sh script to gather all the available

modulefiles into a single modulefiles folder. This means that the actual modulefile scripts are

not moved or modified. As a consequence, the ${ModulesCurrentModulefile} variable points to

the symlink to each modulefile, not to the actual modulefile located in the respective

installation folders. To determine the full path to the actual modulefiles, each modulefile starts

with a statement like this:

[file readlink ${ModulesCurrentModulefile}]

to get a direct reference to the original modulefile in the product install directory. This is done

because the actual install location can be customized and is, therefore, unknown at runtime and

must be deduced. For that reason, the actual modulefile cannot be moved outside of the installed

location, otherwise it will not be able to locate the absolute path to the library or application that it

must configure.

For a better understanding, review the modulefiles included with the installation. Most include

comments explaining how they resolve symlink references to a real file, as well as parsing the

version number (and version directory). They also include checks to insure that the installed TCL

is an appropriate version level.

Use of the module load Command by modulefiles

Several of the modulefiles use the module load command to ensure that any required

dependent modules are also loaded. There is no attempt to specify the version of those dependent

modulefiles. This means you have the option to load a specific version of a dependent module prior

to loading the module that requires that dependent module. If you do not preload a dependent

module, the latest available version is loaded.

This is by design because it gives you the flexibility to control the environment. For example, you

may have installed an updated version of a library that you want to test against a previous version

of the compiler. Perhaps the updated library has a bug fix and you are not interested in changing

the version of any other libraries in your build. If the dependent modulefiles were hard-coded to

require a specific dependent version of this library, you could not perform such a test.

NOTE:

If a dependent module load cannot be satisfied, the currently loading module file will be

terminated and no changes will be made to your environment.

