
Environment Modules – A Great Tool for Clusters » ADMIN
Magazine

Jeff Layton

When people first start using clusters, they tend to stick with whatever compiler and MPI library came with the

cluster when it was installed. As they become more comfortable with the cluster, using the compilers, and using the

MPI libraries, they start to look around at other options: Are there other compilers that could perhaps improve

performance? Similarly, they might start looking at other MPI libraries: Can they help improve performance? Do

other MPI libraries have tools that can make things easier? Perhaps even more importantly, these people would

like to install the next version of the compilers or MPI libraries so they can test them with their code. So this forces

a question: How do you have multiple compilers and multiple MPI libraries on the cluster at the same time and not

get them confused? I’m glad you asked.

The Hard Way

If you want to change you compiler or libraries – basically anything to do with your environment – you might be

tempted to change your $PATH in the .bashrc file (if you are using Bash) and then log out and log back in

whenever you need to change your compiler/MPI combination. Initially this sounds like a pain, and it is, but it

works to some degree. It doesn’t work in the situation where you want to run multiple jobs each with a different

compiler/MPI combination.

For example, say I have a job using the GCC 4.6.2 compilers using Open MPI 1.5.2, then I have a job using GCC

4.5.3 and MPICH2. If I have both jobs in the queue at the same time, how can I control my .bashrc to make sure

each job has the correct $PATH? The only way to do this is to restrict myself to one job in the queue at a time.

When it’s finished I can then change my .bashrc and submit a new job. Because you are using a different

compiler/MPI combination from what is in the queue, even for something as simple as code development, you

have to watch when the job is run to make sure your .bashrc matches your job.

The Easy Way

A much better way to handle compiler/MPI combinations is to use Environment Modules. (Be careful not to

confuse “environment modules” with “kernel modules.”) According to the website, “The Environment Modules

package provides for the dynamic modification of a user’s environment via modulefiles.” Although this might not

sound earth shattering, it actually is a quantum leap for using multiple compilers/MPI libraries, but you can use it

for more than just that, which I will talk about later.

You can use Environment Modules to alter or change environment variables such as $PATH, $MANPATH,

$LD_LIBRARY_LOAD, and others. Because most job scripts for resource managers, such as LSF, PBS-Pro, and

MOAB, are really shell scripts, you can incorporate Environment Modules into the scripts to set the appropriate

$PATH for your compiler/MPI combination, or any other environment variables an application requires for

operation.

How you install Environment Modules depends on how your cluster is built. You can build it from source, as I will

discuss later, or you can install it from your package manager. Just be sure to look for Environment Modules.

Using Environment Modules

To begin, I’ll assume that Environment Modules is installed and functioning correctly, so you can now test a few of

the options typically used. In this article, I’ll be using some examples from TACC. The first thing to check is what

http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mcs.anl.gov/research/projects/mpich2/
http://modules.sourceforge.net/
http://modules.sourceforge.net/
http://www.platform.com/workload-management/high-performance-computing/add-on-products/platform-lsf-family
http://www.platform.com/workload-management/high-performance-computing/add-on-products/platform-lsf-family
http://www.pbsgridworks.com/Default.aspx
http://www.pbsgridworks.com/Default.aspx
http://www.clusterresources.com/
http://www.clusterresources.com/
http://www.tacc.utexas.edu/
http://www.tacc.utexas.edu/

modules are available to you by using the module avail command:

[laytonjb@dlogin-0 ~]$ module avail

--- /opt/apps/intel11_1/modulefiles ---

fftw3/3.2.2 gotoblas2/1.08 hdf5/1.8.4 mkl/10.2.4.032 mvapich2/1.4 netcdf/4.0.1 openmpi/1.4

-- /opt/apps/modulefiles --

gnuplot/4.2.6 intel/11.1(default) papi/3.7.2

intel/10.1 lua/5.1.4 pgi/10.2

-- /opt/modulefiles ---

Linux TACC TACC-paths cluster

--- /cm/shared/modulefiles --

acml/gcc/64/4.3.0 fftw3/gcc/64/3.2.2 mpich2/smpd/ge/open64/64/1.1.1p1

acml/gcc/mp/64/4.3.0 fftw3/open64/64/3.2.2 mpiexec/0.84_427

acml/gcc-int64/64/4.3.0 gcc/4.3.4 mvapich/gcc/64/1.1

acml/gcc-int64/mp/64/4.3.0 globalarrays/gcc/openmpi/64/4.2 mvapich/open64/64/1.1

acml/open64/64/4.3.0 globalarrays/open64/openmpi/64/4.2 mvapich2/gcc/64/1.2

acml/open64-int64/64/4.3.0 hdf5/1.6.9 mvapich2/open64/64/1.2

blacs/openmpi/gcc/64/1.1patch03 hpl/2.0 netcdf/gcc/64/4.0.1

blacs/openmpi/open64/64/1.1patch03 intel-cluster-checker/1.3 netcdf/open64/64/4.0.1

blas/gcc/64/1 intel-cluster-runtime/2.1 netperf/2.4.5

blas/open64/64/1 intel-tbb/ia32/22_20090809oss open64/4.2.2.2

bonnie++/1.96 intel-tbb/intel64/22_20090809oss openmpi/gcc/64/1.3.3

cmgui/5.0 iozone/3_326 openmpi/open64/64/1.3.3

default-environment lapack/gcc/64/3.2.1 scalapack/gcc/64/1.8.0

fftw2/gcc/64/double/2.1.5 lapack/open64/64/3.2.1 scalapack/open64/64/1.8.0

fftw2/gcc/64/float/2.1.5 mpich/ge/gcc/64/1.2.7 sge/6.2u3

fftw2/open64/64/double/2.1.5 mpich/ge/open64/64/1.2.7 torque/2.3.7

fftw2/open64/64/float/2.1.5 mpich2/smpd/ge/gcc/64/1.1.1p1

This command lists what environment modules are available. You’ll notice that TACC has a very large number of

possible modules that provide a range of compilers, MPI libraries, and combinations. A number of applications

show up in the list as well.

You can check which modules are “loaded” in your environment by using the list option with the module

command:

[laytonjb@dlogin-0 ~]$ module list

Currently Loaded Modulefiles:

 1) Linux 2) intel/11.1 3) mvapich2/1.4 4) sge/6.2u3 5) cluster 6) TACC

This indicates that when I log in, I have six modules already loaded for me. If I want to use any additional modules,

I have to load them manually:

[laytonjb@dlogin-0 ~]$ module load gotoblas2/1.08

[laytonjb@dlogin-0 ~]$ module list

Currently Loaded Modulefiles:

 1) Linux 3) mvapich2/1.4 5) cluster 7) gotoblas2/1.08

 2) intel/11.1 4) sge/6.2u3 6) TACC

You can just cut and paste from the list of available modules to load the ones you want or need. (This is what I do,

and it makes things easier.) By loading a module, you will have just changed the environmental variables defined

for that module. Typically this is $PATH, $MANPATH, and $LD_LIBRARY_LOAD.

To unload or remove a module, just use the unload option with the module command, but you have to specify the

complete name of the environment module:

[laytonjb@dlogin-0 ~]$ module unload gotoblas2/1.08

[laytonjb@dlogin-0 ~]$ module list

Currently Loaded Modulefiles:

 1) Linux 2) intel/11.1 3) mvapich2/1.4 4) sge/6.2u3 5) cluster 6) TACC

Notice that the gotoblas2/1.08 module is no longer listed. Alternatively, to you can unload all loaded environment

modules using module purge:

[laytonjb@dlogin-0 ~]$ module purge

[laytonjb@dlogin-0 ~]$ module list

No Modulefiles Currently Loaded.

You can see here that after the module purge command, no more environment modules are loaded.

If you are using a resource manager (job scheduler), you are likely creating a script that requests the resources and

runs the application. In this case, you might need to load the correct Environment Modules in your script. Typically

after the part of the script in which you request resources (in the PBS world, these are defined as #PBS

commands), you will then load the environment modules you need.

Now that you’ve seen a few basic commands for using Environment Modules, I’ll go into a little more depth,

starting with installing from source. Then I’ll use the module in a job script and write my own module.

Building Environment Modules for Clusters

In my opinion, the quality of open source code has improved over the last several years to the point at which

building and installing is fairly straightforward, even if you haven’t built any code before. If you haven’t built code,

don’t be afraid to start with Environment Modules.

For this article, as an example, I will build Environment Modules on a “head” node in the cluster in /usr/local. I

will assume that you have /usr/local NSF exported to the compute nodes or some other filesystem or directory that

is mounted on the compute nodes (perhaps a global filesystem?). If you are building and testing your code on a

production cluster, be sure to check that /usr/local is mounted on all of the compute nodes.

To begin, download the latest version – it should be a *.tar.gz file. (I’m using v3.2.6, but the latest as of writing this

article is v3.2.9). To make things easier, build the code in /usr/local. The documentation that comes with

Environment Modules recommends that it be built in /usr/local/Modules/src. As root, run the following

commands:

% cd /usr/local

% mkdir Modules

% cd Modules

% mkdir src

% cp modules-3.2.6.tar.gz /usr/local/Modules/src

% gunzip -c modules-3.2.6.tar.gz | tar xvf -

% cd modules-3.2.6

At this point, I would recommend you carefully read the INSTALL file; it will save your bacon. (The first time I

built Environment Modules, I didn’t read it and had lots of trouble.)

Before you start configuring and building the code, you need to fulfill a few prerequisites. First, you should have Tcl

installed, as well as the Tcl Development package. Because I don’t know what OS or distribution you are running,

I’ll leave to you the tasks of installing Tcl and Tcl Development on the node where you will be building

Environment Modules.

At this point, you should configure and build Environment Modules. As root, enter the following commands:

% cd /usr/local/Modules/src/modules-3.2.6

% ./configure

% make

% make install

The INSTALL document recommends making a symbolic link in /usr/local/Modules connecting the current

version of Environment Modules to a directory called default:

% cd /usr/local/Modules

% sudo ln -s 3.2.6 default

The reason they recommend using the symbolic link is that, if you upgrade Environment Modules to a new version,

you build it in /usr/local/Modules/src and then create a symbolic link from /usr/local/Modules/<new> to

/usr/local/Modules/default, which makes it easier to upgrade.

The next thing to do is copy one (possibly more) of the init files for Environment Modules to a global location for

all users. For my particular cluster, I chose to use the sh init file. This file will configure Environment Modules for

all of the users. I chose to use the sh version rather than csh or bash, because sh is the least common denominator:

% sudo cp /usr/local/Modules/default/init/sh /etc/profile.d/modules.sh

% chmod 755 /etc/profile.d/modules.sh

Now users can use Environment Modules by just putting the following in their .bashrc or .profile:

%. /etc/profile.d/modules.sh

As a simple test, you can run the above script and then type the command module. If you get some information

about how to use modules, such as what you would see if you used the -help option, then you have installed

Environment Modules correctly.

Environment Modules in Job Scripts

In this section, I want to show you how you can use Environment Modules in a job script. I am using PBS for this

quick example, with this code snippet for the top part of the job script:

#PBS -S /bin/bash

#PBS -l nodes=8:ppn=2

. /etc/profile.d/modules.sh

module load compiler/pgi6.1-X86_64

module load mpi/mpich-1.2.7

(insert mpirun command here)

At the top of the code snippet is the PBS directives that begin with #PBS. After the PBS directives, I invoke the

Environment Modules startup script (modules.sh). Immediately after that, you should load the modules you need

for your job. For this particular example, taken from a three-year-old job script of mine, I’ve loaded a compiler (pgi

6.1-x86_64) and an MPI library (mpich-1.2.7).

Building Your Own Module File

Creating your own module file is not too difficult. If you happen to know some Tcl, then it’s pretty easy; however,

even if you don’t know Tcl, it’s simple to follow an example to create your own.

The modules themselves define what you want to do to the environment when you load the module. For example,

you can create new environment variables that you might need to run the application or change $PATH,

$LD_LIBRARY_LOAD, or $MANPATH so a particular application will run correctly. Believe it or not, you can

even run code within the module or call an external application. This makes Environment Modules very, very

flexible.

To begin, remember that all modules are written in Tcl, so this makes them very programmable. For the example,

here, all of the module files go in /usr/local/Modules/default/modulefiles. In this directory, you can create

subdirectories to better label or organize your modules.

In this example, I’m going to create a module for gcc-4.6.2 that I build and install into my home account. To begin,

I create a subdirectory called compilers for any module file that has to do with compilers. Environment Modules

has a sort of template you can use to create your own module. I used this as the starting point for my module. As

root, do the following:

% cd /usr/local/Modules/default/modulefiles

% mkdir compilers

% cp modules compilers/gcc-4.6.2

The new module will appear in the module list as compilers/gcc-4.6.2. I would recommend that you look at the

template to get a feel for the syntax and what the various parts of the modulefile are doing. Again, recall that

Environment Modules use Tcl as its language but you don’t have to know much about Tcl to create a module file.

The module file I created follows:

#%Module1.0###

##

modules compilers/gcc-4.6.2

##

modulefiles/compilers/gcc-4.6.2. Written by Jeff Layton

##

proc ModulesHelp { } {

 global version modroot

 puts stderr "compilers/gcc-4.6.2 - sets the Environment for GCC 4.6.2 in my home directory"

}

module-whatis "Sets the environment for using gcc-4.6.2 compilers (C, Fortran)"

for Tcl script use only

set topdir /home/laytonj/bin/gcc-4.6.2

set version 4.6.2

set sys linux86

setenv CC $topdir/bin/gcc

setenv GCC $topdir/bin/gcc

setenv FC $topdir/bin/gfortran

setenv F77 $topdir/bin/gfortran

setenv F90 $topdir/bin/gfortran

prepend-path PATH $topdir/include

prepend-path PATH $topdir/bin

prepend-path MANPATH $topdir/man

prepend-path LD_LIBRARY_PATH $topdir/lib

The file might seem a bit long, but it is actually fairly compact. The first section provides help with this particular

module if a user asks for it (the line that begins with puts stderr); for example:

home8:~> module help compilers/gcc-4.6.2

----------- Module Specific Help for 'compilers/gcc-4.6.2' --------

compilers/gcc-4.6.2 - sets the Environment for GCC 4.6.2 in my home directory

You can have multiple strings by using several puts stderr lines in the module (the template has several lines).

After the help section in the procedure ModuleHelp, another line provides some simple information when a user

uses the whatis option; for example:

home8:~> module whatis compilers/gcc-4.6.2

compilers/gcc-4.6.2 : Sets the environment for using gcc-4.6.2 compilers (C, Fortran)

After the help and whatis definitions is a section where I create whatever environment variables are needed, as well

as modify $PATH, $LD_LIBRARY_PATH, and $MANPATH or other standard environment variables. To make

life a little easier for me, I defined some local variables:topdir, version, and sys. I only used topdir, but I defined

the other two variables in case I needed to go back and modify the module (the variables can help remind me what

the module was designed to do).

In this particular modulefile, I defined a set of environment variables pointing to the compilers (CC, GCC, FC, F77,

and F90). After defining those environment variables, I modified $PATH, $LD_LIBRARY_PATH, and

$MANPATH so that the compiler was first in these paths by using the prepend-path directive.

This basic module is pretty simple, but you can get very fancy if you want or need to. For example, you could make

a module file dependent on another module file so that you have to load a specific module before you load the one

you want. Or, you can call external applications – for example, to see whether an application is installed and

functioning. You are pretty much limited only by your needs and imagination.

Making Sure It Works Correctly

Now that you’ve defined a module, you need to check to make sure it works. Before you load the module, check to

see which gcc is being used:

home8:~> which gcc

/usr/bin/gcc

home8:~> gcc -v

Reading specs from /usr/lib/gcc/i386-redhat-linux/3.4.3/specs

Configured with: ../configure --prefix=/usr --mandir=/usr/share/man

--infodir=/usr/share/info --enable-shared --enable-threads=posix

--disable-checking --with-system-zlib --enable-__cxa_atexit

--disable-libunwind-exceptions--enable-java-awt=gtk

--host=i386-redhat-linux Thread model: posix

gcc version 3.4.3 20050227 (Red Hat 3.4.3-22.1)

This means gcc is currently pointing to the system gcc. (Yes, this is a really old gcc; I need to upgrade my simple

test box at home).

Next, load the module and check which gcc is being used:

home8:~> module avail

----------------------------- /usr/local/Modules/versions ------------------------------

3.2.6

------------------------- /usr/local/Modules/3.2.6/modulefiles --------------------------

compilers/gcc-4.6.2 dot module-info null

compilers/modules module-cvs modules use.own

home8:~> module load compilers/gcc-4.6.2

home8:~> module list

Currently Loaded Modulefiles:

 1) compilers/gcc-4.6.2

home8:~> which gcc

~/bin/gcc-4.6.2/bin/gcc

home8:~> gcc -v

Using built-in specs.

Target: i686-pc-linux-gnu

Configured with: ./configure --prefix=/home/laytonj/bin/gcc-4.6.2

--enable-languages=c,fortran --enable-libgomp

Thread model: posix

gcc version 4.6.2

This means if you used gcc, you would end up using the version built in your home directory.

As a final check, unload the module and recheck where the default gcc points:

home8:~> module unload compilers/gcc-4.6.2

home8:~> module list

No Modulefiles Currently Loaded.

home8:~> which gcc

/usr/bin/gcc

home8:~> gcc -v

Reading specs from /usr/lib/gcc/i386-redhat-linux/3.4.3/specs

Configured with: ../configure --prefix=/usr --mandir=/usr/share/man

--infodir=/usr/share/info --enable-shared --enable-threads=posix

--disable-checking --with-system-zlib --enable-__cxa_atexit

--disable-libunwind-exceptions--enable-java-awt=gtk

--host=i386-redhat-linux

Thread model: posix

gcc version 3.4.3 20050227 (Red Hat 3.4.3-22.1)

Notice that after you unload the module, the default gcc goes back to the original version, which means the

environment variables are probably correct. If you want to be more thorough, you should check all of the

environment variables before loading the module, after the module is loaded, and then after the module is

unloaded. But at this point, I’m ready to declare success!

Final Comments

For clusters, Environment Modules are pretty much the best solution for handling multiple compilers, multiple

libraries, or even applications. They are easy to use even for beginners to the command line. Just a few commands

allow you to add modules to and remove them from your environment easily. You can even use them in job scripts.

As you also saw, it’s not too difficult to write your own module and use it. Environment Modules are truly one of

the indispensable tools for clusters.

