
VASP Licensing and Compilation Guide for
HPC Clusters

Last updated 1 May, 2025 • 2 min read

VASP licensing

Compiling VASP on the cluster

Creating a loadable VASP module on the cluster

Using VASP on the cluster

Multithread job

GPU job

VASP licensing
Teams that would like to run VASP would need to purchase and manage
their own VASP license.

VASP licensing is tied to each team that purchases a license and the license
is not allowed to be shared among different teams, unless a team authorizes
other users within their designated license.

 HPC does not manage the VASP licensing.

After the VASP license is purchased, a team will be granted/assigned the
installation files for the version of VASP the license supports.

Teams can place the VASP installation files within their designated team
shared directories on HPC.

More information for the licensing is available here: .

VASP license registration form is available here:

Compiling VASP on the cluster



 FAQs

 Get a license



https://www.vasp.at/info/faq/
https://www.vasp.at/sign_in/registration_form/

Reading the comments in the VASP makefiles, we can compile VASP with
GCC, the Intel compiler, the AMD AOCC compiler, or NVIDIA’s NVHPC
compiler. We will use the Intel compiler and VASP 6.3.2 in this example:

Here is an example of the contents that can be used with an Intel compiler
build of VASP, settings may change.

Create a directory for our VASP project.
mkdir /path/to/shared/directory/location/vasp
cd /path/to/shared/directory/location/vasp
mkdir vasp-6.3.2
cd /path/to/shared/directory/location/vasp/vasp-6.3.2
mkdir buildfiles
cd buildfiles

Transfer the associated Linux VASP tarball for 6.3.2 to the above directory
Use any file transfer program or means to transfer the tarball
#FileZilla, WinSCP, a direct copy on HPC using cp or rsync, etc

rsync -a --progress vasp.6.3.2.tgz /path/to/shared/directory/location/vasp/vasp-6.3.2/buildfiles

Unpack the source.
tar -xvf vasp.6.3.2.tgz

Load the Intel compiler and hdf5/1.13.2-ics version dependency.
The libraries can change depending on the compiler being used to build
and if dependencies were install locally under a team's shared directory.
#
List available Intel compiler versions:
module avail intelics
Get rid of any other modules that might interfere with our compilation.

module purge
module load intel/oneapi/2022.3 hdf5/1.13.2-ics

Compile the VASP program.
cd vasp.6.3.2

Compile by copying over a pre-set makefile.include file from the arch directory
cp arch/makefile.include.intel_omp .

Edit the makefile.include file that got copied with needed build settings.
nano or vi makefile.include.intel_omp

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

›

Default precompiler options
CPP_OPTIONS = -DHOST=\"LinuxIFC\" \
 -DMPI -DMPI_BLOCK=8000 -Duse_collective \
 -DscaLAPACK \
 -DCACHE_SIZE=4000 \
 -Davoidalloc \
 -Dvasp6 \

1
2
3
4
5
6
7

›

 -Duse_bse_te \
 -Dtbdyn \
 -Dfock_dblbuf

CPP = fpp -f_com=no -free -w0 -march=core-avx2 $*$(FUFFIX) $*$(SUFFIX) $(CPP_OPTIONS)

FC = mpiifort
FCL = mpiifort -qmkl=sequential

FREE = -free -names lowercase

FFLAGS = -assume byterecl -w

OFLAG = -O2
OFLAG_IN = $(OFLAG)
DEBUG = -O0

OBJECTS = fftmpiw.o fftmpi_map.o fftw3d.o fft3dlib.o /gpfs/sharedfs1/admin/hpc2.0/apps/intel/oneapi/2022.3/mkl/2022.2.0/interfaces/fftw3xf/libfftw3xf_intel.a
OBJECTS_O1 += fftw3d.o fftmpi.o fftmpiw.o
OBJECTS_O2 += fft3dlib.o

For what used to be vasp.5.lib
CPP_LIB = $(CPP)
FC_LIB = $(FC)
CC_LIB = icc
CFLAGS_LIB = -O
FFLAGS_LIB = -O1
FREE_LIB = $(FREE)

OBJECTS_LIB = linpack_double.o

For the parser library
CXX_PARS = icpc
LLIBS = -lstdc++

##
Customize as of this point! Of course you may change the preceding
part of this file as well if you like, but it should rarely be
necessary ...
##

When compiling on the target machine itself, change this to the
relevant target when cross-compiling for another architecture
VASP_TARGET_CPU ?= -march=core-avx2
FFLAGS += $(VASP_TARGET_CPU)

Intel MKL (FFTW, BLAS, LAPACK, and scaLAPACK)
(Note: for Intel Parallel Studio's MKL use -mkl instead of -qmkl)
FCL += -qmkl=sequential
MKLROOT ?= /gpfs/sharedfs1/admin/hpc2.0/apps/intel/oneapi/2022.3/mkl/2022.2.0
LLIBS += -L$(MKLROOT)/lib/intel64 -lmkl_scalapack_lp64 -lmkl_blacs_intelmpi_lp64
INCS =-I$(MKLROOT)/include/fftw

HDF5-support (optional but strongly recommended)
CPP_OPTIONS+= -DVASP_HDF5
HDF5_ROOT ?= /gpfs/sharedfs1/admin/hpc2.0/apps/hdf5/1.13.2-ics
LLIBS += -L$(HDF5_ROOT)/lib -lhdf5_fortran
INCS += -I$(HDF5_ROOT)/include

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

After the makefile.include file has the build configuration set, save the file.

Submit an interactive SLURM job to a compute node to perform the build:

Wait for a node to assign to the job, once assigned, perform the build by
running the make command.

Example make command to build with 12 cores and specify to build all of the
VASP executables.

More information on the make command for the VASP build available on
VASP’s Wiki page here:

If there are no errors, VASP should build successfully.

After building, if the vasp_std, vasp_gam, and vasp_ncl executables are not
available, run the following make command:

Creating a loadable VASP module on the
cluster
Create a module file for VASP that so that we can conveniently load VASP
and it's dependencies. The name that you choose for your module file is
important as that is what module uses to reference it. We will make our
name different by adding the "-mine" suffix to help separate it from the
system installed vasp.

For the VASP-2-Wannier90 interface (optional)
#CPP_OPTIONS += -DVASP2WANNIER90
#WANNIER90_ROOT ?= /path/to/your/wannier90/installation
#LLIBS += -L$(WANNIER90_ROOT)/lib -lwannier

66
67
68
69
70

srun -N 1 -n 126 --partition=general --pty bash
1
›

make -j12 all
1
›

 Installing VASP.6.X.X - VASP Wiki

make install
1
›



https://www.vasp.at/wiki/index.php/Installing_VASP.6.X.X

If you are interested, in learning about module files you can read man
modulefile

Finally, make sure that module knows to look in your ~/mod directory for
your module files by setting the MODULEPATH environmental variable:

mkdir -p /path/to/shared/directory/location/mod/vasp
cd /path/to/shared/directory/location/mod/vasp
vi 6.3.2

1
2
3
4
5
6
7
8

›

#%Module1.0
vasp modulefile
##
proc ModulesHelp { } {

 puts stderr "\tAdds vasp/6.3.2 to your environment"
}

module-whatis "Adds vasp/6.3.2 to your environment"

Throw an error if any of these modules are loaded.
module load pre-module

module load intel/oneapi/2022.3
module load zlib/1.2.12-ics
module load hdf5/1.13.2-ics

conflict vasp

setenv MOD_APP vasp
setenv MOD_VER 6.3.2
set prefix /gpfs/sharedfs1/path/to/VASP/install/location/vasp.6.3.2
prepend-path PATH $prefix/locationWhereVaspBinariesHere

module load post-module

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

›

nano ~/.bashrc # Add the lines below.1
2
3
4
5
6

›

Reload your ~/.bashrc file in your current shell:

Using VASP on the cluster
All jobs on the cluster must be submitted through the SLURM scheduler
using sbatch . Please read the SLURM Guide for more details. The
preferred way to run VASP jobs is by specifying your associated VASP
INCAR file to the vasp executable that a team installs within their team’s
shared directory. Please note that if your job uses many cores or a lot of
memory it is better to submit to reserve a whole compute node (126 cores)

Multithread job
To submit a job that uses 126 computational threads on one node, create a
submission script vaspMP.sh:

Then submit the script by:

1 # My modules
2 source /etc/profile.d/modules.sh
3 MODULEPATH=/path/to/shared/directory/location/mod:${MODULEPATH}

1
2
3
4
5
6
7
8

›

source ~/.bashrc
Finally Now we can load and run our VASP module
module load vasp/6.3.2
which vasp
vasp -h

1
2
3
4
5

›





#!/bin/bash
#SBATCH -N 1
#SBATCH -n 126
#SBATCH -p general

module load vaspmodule
export UCX_TLS=tcp,self,sysv,posix
source /gpfs/sharedfs1/admin/hpc2.0/apps/intel/oneapi/2022.3/setvars.sh

mpirun vasp_std <restofcommandhere>

1
2
3
4
5
6
7
8
9

10
11

›

 sbatch vaspMP.sh
1
›

https://kb.uconn.edu/space/SH/26032963685

GPU job
If you are running on a GPU node, feel free to reduce the cores and allocate
resources as needed.

 Do not forget to allocate a GPU card to the job submission by using
the #SBATCH --gres=gpu:X SLURM submission header

You can replace the X above for a GPU job submission with the number of
GPU cards.

Here is an example to request 1 GPU card and 62 cores to a GPU node.



#!/bin/bash
#SBATCH -N 1
#SBATCH -n 62
#SBATCH -p general-gpu
#SBATCH --gres=gpu:1

1
2
3
4
5

›

