
Understanding and Decoding a JPEG
Image using Python

Clip source: Understanding and Decoding a JPEG Image using Python - Yasoob Khalid

Hi everyone!  Today we are going to understand the JPEG compression algorithm. One

thing a lot of people don’t know is that JPEG is not a format but rather an algorithm. The
JPEG images you see are mostly in the JFIF format (JPEG File Interchange Format) that

internally uses the JPEG compression algorithm. By the end of this article, you will have
a much better understanding of how the JPEG algorithm compresses data and how you

can write some custom Python code to decompress it. We will not be covering all the
nuances of the JPEG format (like progressive scan) but rather only the basic baseline

format while writing our decoder.

Introduction
Why write another article on JPEG when there are already hundreds of articles on the
internet? Well, normally when you read articles on JPEG, the author just gives you

details about what the format looks like. You don’t implement any code to do the actual
decompression and decoding. Even if you do write code, it is in C/C++ and not

accessible to a wide group of people. I plan on changing that by showing you how a
basic JPEG decoder works using Python 3. I will be basing my decoder on this MIT

licensed code but will be heavily modifying it for increased readability and ease of
understanding. You can find the modified code for this article on my  GitHub repo.

Different parts of a JPEG
Let’s start with this nice image by Ange Albertini. It lists all different parts of a simple

JPEG file. Take a look at it. We will be exploring each segment. You might have to refer
to this image quite a few times while reading this tutorial.

https://yasoob.me/posts/understanding-and-writing-jpeg-decoder-in-python/
https://github.com/aguaviva/micro-jpeg-visualizer/blob/master/micro-jpeg-visualizer.py
https://github.com/yasoob/Baseline-JPEG-Decoder
https://twitter.com/angealbertini


At the very basic level, almost every binary file contains a couple of markers (or

headers). You can think of these markers as sort of like bookmarks. They are very
crucial for making sense of a file and are used by programs like file (on Mac/Linux) to

tell us details about a file. These markers define where some specific information in a
file is stored. Most of the markers are followed by length information for the particular

marker segment. This tells us how long that particular segment is.

File Start & File End
The very first marker we care about is FF D8. It tells us that this is the start of the

image. If we don’t see it we can assume this is some other file. Another equally
important marker is FF D9. It tells us that we have reached the end of an image file.

Every marker, except for FFD0 to FFD9 and FF01, is immediately followed by a length
specifier that will give you the length of that marker segment. As for the image file start

and image file end markers, they will always be two bytes long each.

Throughout this tutorial, we will be working with this image:



Let’s write some code to identify these markers.

from struct import unpack

marker_mapping = {
0xffd8: "Start of Image",
0xffe0: "Application Default Header",
0xffdb: "Quantization Table",
0xffc0: "Start of Frame",
0xffc4: "Define Huffman Table",
0xffda: "Start of Scan",
0xffd9: "End of Image"
}

class JPEG:
def __init__(self, image_file):
with open(image_file, 'rb') as f:
self.img_data = f.read()
def decode(self):
data = self.img_data
while(True):
marker, = unpack(">H", data[0:2])



print(marker_mapping.get(marker))
if marker == 0xffd8:
data = data[2:]
elif marker == 0xffd9:
return
elif marker == 0xffda:
data = data[-2:]
else:
lenchunk, = unpack(">H", data[2:4])
data = data[2+lenchunk:]
if len(data)==0:
break

if __name__ == "__main__":
img = JPEG('profile.jpg')
img.decode()

# OUTPUT:
# Start of Image
# Application Default Header
# Quantization Table
# Quantization Table
# Start of Frame
# Huffman Table
# Huffman Table
# Huffman Table
# Huffman Table
# Start of Scan
# End of Image

We are using struct to unpack the bytes of image data. >H tells struct to treat the data

as big-endian and of type unsigned short. The data in JPEG is stored in big-endian
format. Only the EXIF data can be in little-endian (even though it is uncommon). And a

short is of size 2 so we provide unpack two bytes from our img_data. You might ask
yourself how we knew it was a short. Well, we know that the markers in JPEG are 4 hex

digits: ffd8. One hex digit equals 4 bits (1/2 byte) so 4 hex digits will equal 2 bytes and a
short is equal to 2 bytes.

The Start of Scan section is immediately followed by image scan data and that image

scan data doesn’t have a length specified. It continues till the “end of file” marker is
found so for now we are manually “seeking” to the EOF marker whenever we see the

SOC marker.

https://docs.python.org/3/library/struct.html


Now that we have the basic framework in place, let’s move on and figure out what the
rest of the image data contains. We will go through some necessary theory first and

then get down to coding.

Encoding a JPEG
I will first explain some basic concepts and encoding techniques used by JPEG and then

decoding will naturally follow from that as a reverse of it. In my experience, directly
trying to make sense of decoding is a bit hard.

Even though the image below won’t mean much to you right now, it will give you some

anchors to hold on to while we go through the whole encoding/decoding process. It
shows the steps involved in the JPEG encoding process: (src)

JPEG Color Space
According to the JPEG spec (ISO/IEC 10918-6:2013 (E), section 6.1):

Images encoded with only one component are assumed to be grayscale data in

which 0 is black and 255 is white.

•

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node234.html
http://www.itu.int/rec/T-REC-T.872-201206-I/en


Most JPEG algorithm implementations use luminance and chrominance (YUV encoding)

instead of RGB. This is super useful in JPEG as the human eye is pretty bad at seeing
high-frequency brightness changes over a small area so we can essentially reduce the

amount of frequency and the human eye won’t be able to tell the difference. Result? A
highly compressed image with almost no visible reduction in quality.

Just like each pixel in RGB color space is made up of 3 bytes of color data (Red, Green,

Blue), each pixel in YUV uses 3 bytes as well but what each byte represents is slightly
different. The Y component determines the brightness of the color (also referred to as

luminance or luma), while the U  and V components determine the color (also known as
chroma). The U component refers to the amount of blue color and the V component

refers to the amount of red color.

This color format was invented when color televisions weren’t super common and
engineers wanted to use one image encoding format for both color and black and white

televisions. YUV could be safely displayed on a black and white TV if color wasn’t
available. You can read more about its history on Wikipedia.

Discrete Cosine Transform & Quantization
JPEG converts an image into chunks of 8x8 blocks of pixels (called MCUs or Minimum
Coding Units), changes the range of values of the pixels so that they center on 0 and

then applies Discrete Cosine Transformation to each block and then uses quantization
to compress the resulting block. Let’s get a high-level understanding of what all of

these terms mean.

A Discrete Cosine Transform is a method for converting discrete data points into a
combination of cosine waves. It seems pretty useless to spend time converting an

image into a bunch of cosines but it makes sense once we understand DCT in
combination with how the next step works. In JPEG, DCT will take an 8x8 image block

and tell us how to reproduce it using an 8x8 matrix of cosine functions.  Read more
here)

Images encoded with three components are assumed to be RGB data encoded as

YCbCr unless the image contains an APP14 marker segment as specified in 6.5.3, in
which case the color encoding is considered either RGB or YCbCr according to the

application data of the APP14 marker segment. The relationship between RGB and
YCbCr is defined as specified in Rec. ITU-T T.871 | ISO/IEC 10918-5.

•

Images encoded with four components are assumed to be CMYK, with (0,0,0,0)
indicating white unless the image contains an APP14 marker segment as specified

in 6.5.3, in which case the color encoding is considered either CMYK or YCCK
according to the application data of the APP14 marker segment. The relationship

between CMYK and YCCK is defined as specified in clause 7.

•

https://www.wikiwand.com/en/YUV
https://www.impulseadventure.com/photo/jpeg-minimum-coded-unit.html
https://www.impulseadventure.com/photo/jpeg-minimum-coded-unit.html


The 8x8 matrix of cosine functions look like this:

We apply DCT to each component of a pixel separately. The output of applying DCT is
an 8x8 coefficient matrix that tells us how much each cosine function (out of 64 total

functions) contributes to the 8x8 input matrix. The coefficient matrix of a DCT generally
contains bigger values in the top left corner of the coefficient matrix and smaller values

in the bottom right corner. The top left corner represents the lowest frequency cosine
function and the bottom right represents the highest frequency cosine function.

What this tells us is that most images contain a huge amount of low-frequency

information and a small amount of high-frequency information. If we turn the bottom
right components of each DCT matrix to 0, the resulting image would still appear the

same because, as I mentioned, humans are bad at observing high-frequency changes.
This is exactly what we do in the next step.

I found a wonderful video on this topic. Watch it if DCT doesn’t make too much sense.

https://www.youtube.com/watch?v=Q2aEzeMDHMA
We have all heard that JPEG is a lossy compression algorithm but so far we haven’t

done anything lossy. We have only transformed 8x8 blocks of YUV components into
8x8 blocks of cosine functions with no loss of information. The lossy part comes in the

quantization step.

https://www.youtube.com/watch?v=Q2aEzeMDHMA
https://www.youtube.com/watch?v=Q2aEzeMDHMA


Quantization is a process in which we take a couple of values in a specific range and
turns them into a discrete value. For our case, this is just a fancy name for converting

the higher frequency coefficients in the DCT output matrix to 0. When you save an
image using JPEG, most image editing programs ask you how much compression you

need. The percentage you supply there affects how much quantization is applied and
how much of higher frequency information is lost. This is where the lossy compression

is applied. Once you lose high-frequency information, you can’t recreate the exact
original image from the resulting JPEG image.

Depending on the compression level required, some common quantization matrices are

used (fun fact: Most vendors have patents on quantization table construction). We
divide the DCT coefficient matrix element-wise with the quantization matrix, round the

result to an integer, and get the quantized matrix. Let’s go through an example.

If you have this DCT matrix:

This (common) Quantization matrix:



Then the resulting quantized matrix will be this:

Even though humans can’t see high-frequency information, if you remove too much

information from the 8x8 image chunks, the overall image will look blocky. In this
quantized matrix, the very first value is called a DC value and the rest of the values are

AC values. If we were to take the DC values from all the quantized matrices and



generated a new image, we will essentially end up with a thumbnail with 1/8th resolution

of the original image.

It is also important to note that because we apply quantization while decoding, we will
have to make sure the colors fall in the [0,255] range. If they fall outside this range, we

will have to manually clamp them to this range.

Zig-zag
After quantization, JPEG uses zig-zag encoding to convert the matrix to 1D (img src):

Let’s imagine we have this quantized matrix:

The output of zig-zag encoding will be this:

https://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2009/jl589_jbw48/jl589_jbw48/index.html


[15 14 13 12 11 10 9 8 0 ... 0]

This encoding is preferred because most of the low frequency (most significant)

information is stored at the beginning of the matrix after quantization and the zig-zag
encoding stores all of that at the beginning of the 1D matrix. This is useful for the

compression that happens in the next step.

Run-length and Delta encoding
Run-length encoding is used to compress repeated data. At the end of the zig-zag

encoding, we saw how most of the zig-zag encoded 1D arrays had so many 0s at the
end. Run-length encoding allows us to reclaim all that wasted space and use fewer

bytes to represent all of those 0s. Imagine you have some data like this:

10 10 10 10 10 10 10

Run-length encoding will convert it into:

7 10

We were able to successfully compress 7 bytes of data into only 2 bytes.

Delta encoding is a technique used to represent a byte relative to the byte before it. It is
easier to understand this with an example. Let’s say you have the following data:

10 11 12 13 10 9

You can use delta encoding to store it like this:

10 1 2 3 0 -1

In JPEG, every DC value in a DCT coefficient matrix is delta encoded relative to the DC

value preceding it. This means that if you change the very first DCT coefficient of your
image, the whole image will get screwed up but if you modify the first value of the last

DCT matrix, only a very tiny part of your image will be affected. This is useful because
the first DC value in your image is usually the most varied and by applying the Delta



encoding we bring the rest of DC values close to 0 and that results in better

compression in the next step of Huffman Encoding.

Huffman Encoding
Huffman encoding is a method for lossless compression of information. Huffman once

asked himself, “What’s the smallest number of bits I can use to store an arbitrary piece
of text?”. This coding format was his answer. Imagine you have to store this text:

a b c d e

In a normal scenario each character would take up 1 byte of space:

a: 01100001
b: 01100010
c: 01100011
d: 01100100
e: 01100101

This is based on ASCII to binary mapping. But what if we could come up with a custom

mapping?

# Mapping

000: 01100001
001: 01100010
010: 01100011
100: 01100100
011: 01100101

Now we can store the same text using way fewer bits:

a: 000
b: 001
c: 010
d: 100
e: 011



This is all well and good but what if we want to take even less space? What if we were

able to do something like this:

# Mapping
0: 01100001
1: 01100010
00: 01100011
01: 01100100
10: 01100101

a: 0
b: 1
c: 00
d: 01
e: 10

Huffman encoding allows us to use this sort of variable-length mapping. It takes some
input data, maps the most frequent characters to the smaller bit patterns and least

frequent characters to larger bit patterns, and finally organizes the mapping into a
binary tree. In a JPEG we store the DCT (Discrete Cosine Transform) information using

Huffman encoding. Remember I told you that using delta encoding for DC values helps
in Huffman Encoding? I hope you can see why now. After delta encoding, we end up

with fewer “characters” to map and the total size of our Huffman tree is reduced.

Tom Scott has a wonderful video with animations on how Huffman encoding works in
general. Do watch it before moving on.

https://www.youtube.com/watch?v=JsTptu56GM8
A JPEG contains up to 4 Huffman tables and these are stored in the “Define Huffman

Table” section (starting with 0xffc4). The DCT coefficients are stored in 2 different
Huffman tables. One contains only the DC values from the zig-zag tables and the other

contains the AC values from the zig-zag tables. This means that in our decoding, we will
have to merge the DC and AC values from two separate matrices. The DCT information

for the luminance and chrominance channel is stored separately so we have 2 sets of
DC and 2 sets of AC information giving us a total of 4 Huffman tables.

In a greyscale image, we would have only 2 Huffman tables (1 for DC and 1 for AC)

because we don’t care about the color. As you can already imagine, 2 images can have
very different Huffman tables so it is important to store these tables inside each JPEG.

https://www.youtube.com/watch?v=JsTptu56GM8
https://www.youtube.com/watch?v=JsTptu56GM8


So we know the basic details of what a JPEG image contains. Let’s start with the

decoding!

JPEG decoding
We can break down the decoding into a bunch of steps:

JPEG standard supports 4 compression formats:

We are going to be working with the Baseline compression and according to the

standard, baseline will contain the series of 8x8 blocks right next to each other. The
other compression formats layout the data a bit differently. Just for reference, I have

colored different segments in the hex content of the image we are using. This is how it
looks:

Extract the Huffman tables and decode the bits1.

Extract DCT coefficients by undoing the run-length and delta encodings2.
Use DCT coefficients to combine cosine waves and regenerate pixel values for

each 8x8 block

3.

Convert YCbCr to RGB for each pixel4.

Display the resulting RGB image5.

Baseline•

Extended Sequential•
Progressive•

Lossless•



Extracting the Huffman tables
We already know that a JPEG contains 4 Huffman tables. This is the last step in the
encoding procedure so it should be the first step in the decoding procedure. Each DHT

section contains the following information:



Suppose you have a DH table similar to this (src):

Field Size Description

Marker Identifier 2 bytes
0xff, 0xc4 to identify
DHT marker

Length 2 bytes
This specifies the length
of Huffman table

HT information 1 byte

bit 0..3: number of HT
(0..3, otherwise error)

bit 4: type of HT, 0 = DC

table, 1 = AC table

bit 5..7: not used, must
be 0

Number of Symbols 16 bytes

Number of symbols with
codes of length 1..16,

the sum(n) of these
bytes is the total

number of codes, which
must be <= 256

Symbols n bytes

Table containing the
symbols in order of

increasing code length (
n = total number of

codes ).

https://koushtav.me/jpeg/tutorial/c++/decoder/2019/03/02/lets-write-a-simple-jpeg-library-part-2/


It will be stored in the JFIF file roughly like this (they will be stored in binary. I am using
ASCII just for illustration purposes):

0 1 5 1 1 1 1 1 1 0 0 0 0 0 0 0 a b c d e f g h i j k l

The 0 means that there is no Huffman code of length 1. 1 means that there is 1 Huffman

code of length 2. And so on. There are always 16 bytes of length data in the DHT
section right after the class and ID information. Let’s write some code to extract the

lengths and elements in DHT.

class JPEG:
# ...
def decodeHuffman(self, data):
offset = 0
header, = unpack("B",data[offset:offset+1])
offset += 1

Symbol Huffman code Code length

a 00 2

b 010 3

c 011 3

d 100 3

e 101 3

f 110 3

g 1110 4

h 11110 5

i 111110 6

j 1111110 7

k 11111110 8

l 111111110 9



# Extract the 16 bytes containing length data
lengths = unpack("BBBBBBBBBBBBBBBB", data[offset:offset+16])
offset += 16

# Extract the elements after the initial 16 bytes
elements = []
for i in lengths:
elements += (unpack("B"*i, data[offset:offset+i]))
offset += i

print("Header: ",header)
print("lengths: ", lengths)
print("Elements: ", len(elements))
data = data[offset:]

def decode(self):
data = self.img_data
while(True):
# ---
else:
len_chunk, = unpack(">H", data[2:4])
len_chunk += 2
chunk = data[4:len_chunk]

if marker == 0xffc4:
self.decodeHuffman(chunk)
data = data[len_chunk:]
if len(data)==0:
break

If you run the code, it should produce the following output:

Start of Image
Application Default Header
Quantization Table
Quantization Table
Start of Frame
Huffman Table
Header: 0
lengths: (0, 2, 2, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Elements: 10
Huffman Table



Header: 16
lengths: (0, 2, 1, 3, 2, 4, 5, 2, 4, 4, 3, 4, 8, 5, 5, 1)
Elements: 53
Huffman Table
Header: 1
lengths: (0, 2, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Elements: 8
Huffman Table
Header: 17
lengths: (0, 2, 2, 2, 2, 2, 1, 3, 3, 1, 7, 4, 2, 3, 0, 0)
Elements: 34
Start of Scan
End of Image

Sweet! We got the lengths and the elements. Now we need to create a custom Huffman

table class so that we can recreate a binary tree from these elements and lengths. I am
shamelessly copying this code from here:

class HuffmanTable:
def __init__(self):
self.root=[]
self.elements = []
def BitsFromLengths(self, root, element, pos):
if isinstance(root,list):
if pos==0:
if len(root)<2:
root.append(element)
return True
return False
for i in [0,1]:
if len(root) == i:
root.append([])
if self.BitsFromLengths(root[i], element, pos-1) == True:
return True
return False
def GetHuffmanBits(self, lengths, elements):
self.elements = elements
ii = 0
for i in range(len(lengths)):
for j in range(lengths[i]):
self.BitsFromLengths(self.root, elements[ii], i)
ii+=1

https://github.com/aguaviva/micro-jpeg-visualizer


def Find(self,st):
r = self.root
while isinstance(r, list):
r=r[st.GetBit()]
return r

def GetCode(self, st):
while(True):
res = self.Find(st)
if res == 0:
return 0
elif ( res != -1):
return res
class JPEG:
# -----

def decodeHuffman(self, data):
# ----
hf = HuffmanTable()
hf.GetHuffmanBits(lengths, elements)
data = data[offset:]

The GetHuffmanBits takes in the lengths and elements, iterates over all the elements

and puts them in a root list. This list contains nested lists and represents a binary tree.
You can read online how a Huffman Tree works and how to create your own Huffman

tree data structure in Python. For our first DHT (using the image I linked at the start of
this tutorial) we have the following data, lengths, and elements:

Hex Data: 00 02 02 03 01 01 01 00 00 00 00 00 00 00 00 00
Lengths: (0, 2, 2, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Elements: [5, 6, 3, 4, 2, 7, 8, 1, 0, 9]

After calling GetHuffmanBits on this, the root list will contain this data:

[[5, 6], [[3, 4], [[2, 7], [8, [1, [0, [9]]]]]]]

The HuffmanTable also contains the GetCode method that traverses the tree for us and

gives us back the decoded bits using the Huffman table. This method expects a
bitstream as an input. A bitstream is just the binary representation of data. For example,



a typical bitstream of abc will be 011000010110001001100011. We first convert each

character into its ASCII code and then convert that ASCII code to binary. Let’s create a
custom class that will allow us to convert a string into bits and read the bits one by one.

This is how we will implement it:

class Stream:
def __init__(self, data):
self.data= data
self.pos = 0

def GetBit(self):
b = self.data[self.pos >> 3]
s = 7-(self.pos & 0x7)
self.pos+=1
return (b >> s) & 1

def GetBitN(self, l):
val = 0
for i in range(l):
val = val*2 + self.GetBit()
return val

We feed this class some binary data while initializing it and then use the GetBit and
GetBitN methods to read it.

Decoding the Quantization Table
The Define Quantization Table section contains the following data:



According to the JPEG standard, there are 2 default quantization tables in a JPEG

image. One for luminance and one for chrominance. These tables start at the 0xffdb
marker. In the initial code we wrote, we already saw that the output contained two

0xffdb markers. Let’s extend the code we already have and add the ability to decode
quantization tables as well:

def GetArray(type,l, length):
s = ""
for i in range(length):
s =s+type
return list(unpack(s,l[:length]))
class JPEG:
# ------
def __init__(self, image_file):
self.huffman_tables = {}
self.quant = {}
with open(image_file, 'rb') as f:
self.img_data = f.read()

def DefineQuantizationTables(self, data):
hdr, = unpack("B",data[0:1])
self.quant[hdr] = GetArray("B", data[1:1+64],64)
data = data[65:]

Field Size Description

Marker Identifier 2 bytes
0xff, 0xdb identifies
DQT

Length 2 bytes
This gives the length of
QT.

QT information 1 byte

bit 0..3: number of QT
(0..3, otherwise error)

bit 4..7: the precision of
QT, 0 = 8 bit, otherwise

16 bit

Bytes n bytes
This gives QT values, n

= 64*(precision+1)



def decodeHuffman(self, data):
# ------
for i in lengths:
elements += (GetArray("B", data[off:off+i], i))
offset += i
# ------

def decode(self):
# ------
while(True):
# ----
else:
# -----
if marker == 0xffc4:
self.decodeHuffman(chunk)
elif marker == 0xffdb:
self.DefineQuantizationTables(chunk)
data = data[len_chunk:]
if len(data)==0:
break

We did a couple of things here. First, I defined a GetArray method. It is just a handy

method for decoding a variable number of bytes from binary data. I replaced some code
in decodeHuffman method to make use of this new function as well. After that, I defined

the DefineQuantizationTables method. This method simply reads the header of a
Quantization Table section and then appends the quantization data in a dictionary with

the header value as the key. The header value will be 0 for luminance and 1 for
chrominance. Each Quantization Table section in the JFIF contains 64 bytes of QT data

(for our 8x8 Quantization matrix).

If we print the quantization matrices for our image. They will look like this:

3 2 2 3 2 2 3 3
3 3 4 3 3 4 5 8
5 5 4 4 5 10 7 7
6 8 12 10 12 12 11 10
11 11 13 14 18 16 13 14
17 14 11 11 16 22 16 17
19 20 21 21 21 12 15 23
24 22 20 24 18 20 21 20



3 2 2 3 2 2 3 3
3 2 2 3 2 2 3 3
3 3 4 3 3 4 5 8
5 5 4 4 5 10 7 7
6 8 12 10 12 12 11 10
11 11 13 14 18 16 13 14
17 14 11 11 16 22 16 17
19 20 21 21 21 12 15 23
24 22 20 24 18 20 21 20

Decoding Start of Frame
The Start of Frame section contains the following information (src):

http://vip.sugovica.hu/Sardi/kepnezo/JPEG%20File%20Layout%20and%20Format.htm


Out of this data we only care about a few things. We will extract the image width and
height and the quantization table number of each component. The width and height will

be used when we start decoding the actual image scans from the Start of Scan section.
Because we are going to be mainly working with a YCbCr image, we can expect the

number of components to be equal to 3 and the component types to be equal to 1, 2
and 3 respectively. Let’s write some code to decode this data:

class JPEG:
def __init__(self, image_file):
self.huffman_tables = {}
self.quant = {}

Field Size Description

Marker Identifier 2 bytes
0xff, 0xc0 to identify
SOF0 marker

Length 2 bytes
This value equals to 8 +
components*3 value

Data precision 1 byte

This is in bits/sample,
usually 8 (12 and 16 not

supported by most
software).

Image height 2 bytes This must be > 0

Image Width 2 bytes This must be > 0

Number of components 1 byte
Usually 1 = grey scaled,
3 = color YcbCr or YIQ

Each component 3 bytes

Read each component
data of 3 bytes. It

contains, (component
Id(1byte)(1 = Y, 2 = Cb, 3

= Cr, 4 = I, 5 = Q),
sampling factors (1byte)

(bit 0-3 vertical., 4-7
horizontal.),

quantization table
number (1 byte)).



self.quantMapping = []
with open(image_file, 'rb') as f:
self.img_data = f.read()
# ----
def BaselineDCT(self, data):
hdr, self.height, self.width, components = unpack(">BHHB",data[0:6])
print("size %ix%i" % (self.width, self.height))

for i in range(components):
id, samp, QtbId = unpack("BBB",data[6+i*3:9+i*3])
self.quantMapping.append(QtbId)
def decode(self):
# ----
while(True):
# -----
elif marker == 0xffdb:
self.DefineQuantizationTables(chunk)
elif marker == 0xffc0:
self.BaselineDCT(chunk)
data = data[len_chunk:]
if len(data)==0:
break

We added a quantMapping list attribute to our JPEG class and introduced a

BaselineDCT method. The BaselineDCT method decodes the required data from the
SOF section and puts the quantization table numbers of each component in the

quantMapping list. We will make use of this mapping once we start reading the Start of
Scan section. This is what the quantMapping looks like for our image:

Quant mapping: [0, 1, 1]

Decoding Start of Scan
Sweet! We only have one more section left to decode. This is the meat of a JPEG image
and contains the actual “image” data. This is also the most involved step. Everything

else we have decoded so far can be thought of as creating a map to help us navigate
and decode the actual image. This section contains the actual image itself (albeit in an

encoded form). We will read this section and use the data we have already decoded to
make sense of the image.

All the markers we have seen so far start with 0xff.  0xff can be part of the image scan

data as well but if 0xff is present in the scan data, it will always be proceeded by 0x00.



This is something a JPEG encoder does automatically and is called byte stuffing. It is

the decoder’s duty to remove this proceeding 0x00. Let’s start the SOS decoder
method with this function and get rid of 0x00 if it is present. In the sample image I am

using, we don’t have 0xff in the image scan data but it is nevertheless a useful addition.

def RemoveFF00(data):
datapro = []
i = 0
while(True):
b,bnext = unpack("BB",data[i:i+2])
if (b == 0xff):
if (bnext != 0):
break
datapro.append(data[i])
i+=2
else:
datapro.append(data[i])
i+=1
return datapro,i

class JPEG:
# ----
def StartOfScan(self, data, hdrlen):
data,lenchunk = RemoveFF00(data[hdrlen:])
return lenchunk+hdrlen
def decode(self):
data = self.img_data
while(True):
marker, = unpack(">H", data[0:2])
print(marker_mapping.get(marker))
if marker == 0xffd8:
data = data[2:]
elif marker == 0xffd9:
return
else:
len_chunk, = unpack(">H", data[2:4])
len_chunk += 2
chunk = data[4:len_chunk]
if marker == 0xffc4:
self.decodeHuffman(chunk)
elif marker == 0xffdb:
self.DefineQuantizationTables(chunk)
elif marker == 0xffc0:



self.BaselineDCT(chunk)
elif marker == 0xffda:
len_chunk = self.StartOfScan(data, len_chunk)
data = data[len_chunk:]
if len(data)==0:
break

Previously I was manually seeking to the end of the file whenever I encountered the

0xffda marker but now that we have the required tooling in place to go through the
whole file in a systematic order, I moved the marker condition inside the else clause.

The RemoveFF00 function simply breaks whenever it observer something other than
0x00 after 0xff. Therefore, it will break out of the loop when it encounters 0xffd9, and

that way we can safely seek to the end of the file without any surprises. If you run this
code now, nothing new will output to the terminal.

Recall that JPEG broke up the image into an 8x8 matrix. The next step for us is to

convert our image scan data into a bit-stream and process the stream in 8x8 chunks of
data. Let’s add some more code to our class:

class JPEG:
# -----
def StartOfScan(self, data, hdrlen):
data,lenchunk = RemoveFF00(data[hdrlen:])
st = Stream(data)
oldlumdccoeff, oldCbdccoeff, oldCrdccoeff = 0, 0, 0
for y in range(self.height//8):
for x in range(self.width//8):
matL, oldlumdccoeff = self.BuildMatrix(st,0,
self.quant[self.quantMapping[0]], oldlumdccoeff)
matCr, oldCrdccoeff = self.BuildMatrix(st,1,
self.quant[self.quantMapping[1]], oldCrdccoeff)
matCb, oldCbdccoeff = self.BuildMatrix(st,1,
self.quant[self.quantMapping[2]], oldCbdccoeff)
DrawMatrix(x, y, matL.base, matCb.base, matCr.base )
return lenchunk +hdrlen

We start by converting our scan data into a bit-stream. Then we initialize oldlumdccoeff,

oldCbdccoeff, oldCrdccoeff to 0. These are required because remember we talked
about how the DC element in a quantization matrix (the first element of the matrix) is

delta encoded relative to the previous DC element? This will help us keep track of the



value of the previous DC elements and 0 will be the default when we encounter the first

DC element.

The for loop might seem a bit funky. The self.height//8 tells us how many times we can
divide the height by 8. The same goes for self.width//8. This in short tells us how many

8x8 matrices is the image divided in.

The BuildMatrix will take in the quantization table and some additional params, create
an Inverse Discrete Cosine Transformation Matrix, and give us the Y, Cr, and Cb

matrices. The actual conversion of these matrices to RGB will happen in the DrawMatrix
function.

Let’s first create our IDCT class and then we can start fleshing out the BuildMatrix

method.

import math

class IDCT:
"""
An inverse Discrete Cosine Transformation Class
"""

def __init__(self):
self.base = [0] * 64
self.zigzag = [
[0, 1, 5, 6, 14, 15, 27, 28],
[2, 4, 7, 13, 16, 26, 29, 42],
[3, 8, 12, 17, 25, 30, 41, 43],
[9, 11, 18, 24, 31, 40, 44, 53],
[10, 19, 23, 32, 39, 45, 52, 54],
[20, 22, 33, 38, 46, 51, 55, 60],
[21, 34, 37, 47, 50, 56, 59, 61],
[35, 36, 48, 49, 57, 58, 62, 63],
]
self.idct_precision = 8
self.idct_table = [
[
(self.NormCoeff(u) * math.cos(((2.0 * x + 1.0) * u * math.pi) /
16.0))
for x in range(self.idct_precision)
]



for u in range(self.idct_precision)
]

def NormCoeff(self, n):
if n == 0:
return 1.0 / math.sqrt(2.0)
else:
return 1.0

def rearrange_using_zigzag(self):
for x in range(8):
for y in range(8):
self.zigzag[x][y] = self.base[self.zigzag[x][y]]
return self.zigzag

def perform_IDCT(self):
out = [list(range(8)) for i in range(8)]

for x in range(8):
for y in range(8):
local_sum = 0
for u in range(self.idct_precision):
for v in range(self.idct_precision):
local_sum += (
self.zigzag[v][u]
* self.idct_table[u][x]
* self.idct_table[v][y]
)
out[y][x] = local_sum // 4
self.base = out

Let’s try to understand this IDCT class step by step. Once we extract the MCU from a

JPEG, the base attribute of this class will store it. Then we will rearrange the MCU
matrix by undoing the zigzag encoding via the rearrange_using_zigzag method. Finally,

we will undo the Discrete Cosine Transformation by calling the perform_IDCT method.

If you remember, the Discrete Cosine table is fixed. How the actual calculation for a DCT
works is outside the scope of this tutorial as it is more maths than programming. We

can store this table as a global variable and then query that for values based on x,y
pairs. I decided to put the table and its calculation in the IDCT class for readability

purposes. Every single element of the rearranged MCU matrix is multiplied by the
values of the idc_variable and we eventually get back the Y, Cr, and Cb values.



This will make more sense once we write down the BuildMatrix method.

If you modify the zigzag table to something like this:

[[ 0, 1, 5, 6, 14, 15, 27, 28],
[ 2, 4, 7, 13, 16, 26, 29, 42],
[ 3, 8, 12, 17, 25, 30, 41, 43],
[20, 22, 33, 38, 46, 51, 55, 60],
[21, 34, 37, 47, 50, 56, 59, 61],
[35, 36, 48, 49, 57, 58, 62, 63],
[ 9, 11, 18, 24, 31, 40, 44, 53],
[10, 19, 23, 32, 39, 45, 52, 54]]

You will have the following output (notice the small artifacts):

And if you are even brave, you can modify the zigzag table even more:

[[12, 19, 26, 33, 40, 48, 41, 34,],
[27, 20, 13, 6, 7, 14, 21, 28,],
[ 0, 1, 8, 16, 9, 2, 3, 10,],



[17, 24, 32, 25, 18, 11, 4, 5,],
[35, 42, 49, 56, 57, 50, 43, 36,],
[29, 22, 15, 23, 30, 37, 44, 51,],
[58, 59, 52, 45, 38, 31, 39, 46,],
[53, 60, 61, 54, 47, 55, 62, 63]]

It will result in this output:

Now let’s finish up our BuildMatrix method:

def DecodeNumber(code, bits):
l = 2**(code-1)
if bits>=l:
return bits
else:
return bits-(2*l-1)
class JPEG:
# -----
def BuildMatrix(self, st, idx, quant, olddccoeff):
i = IDCT()

code = self.huffman_tables[0 + idx].GetCode(st)



bits = st.GetBitN(code)
dccoeff = DecodeNumber(code, bits) + olddccoeff

i.base[0] = (dccoeff) * quant[0]
l = 1
while l < 64:
code = self.huffman_tables[16 + idx].GetCode(st)
if code == 0:
break

# The first part of the AC quantization table
# is the number of leading zeros
if code > 15:
l += code >> 4
code = code & 0x0F

bits = st.GetBitN(code)

if l < 64:
coeff = DecodeNumber(code, bits)
i.base[l] = coeff * quant[l]
l += 1

i.rearrange_using_zigzag()
i.perform_IDCT()

return i, dccoeff

We start by creating an Inverse Discrete Cosine Transformation class (IDCT()). Then we

read in the bit-stream and decode it using our Huffman table.

The self.huffman_tables[0] and self.huffman_tables[1] refer to the DC tables for
luminance and chrominance respectively  and self.huffman_tables[16] and

self.huffman_tables[17] refer to the AC tables for luminance and chrominance
respectively.

After we decode the bit-stream, we extract the new delta encoded DC coefficient

using the DecodeNumber function and add the olddccoefficient to it to get the delta
decoded DC coefficient.

After that, we repeat the same decoding procedure but for the AC values in the

quantization matrix. The code value of 0 suggests that we have encountered an End of



Block (EOB) marker and we need to stop. Moreover, the first part of the AC quant table

tells us how many leading 0’s we have. Remember the run-length encoding we talked
about in the first part? This is where that is coming into play. We decode the run-length

encoding and skip forward that many bits. The skipped bits are all set to 0 implicitly in
the IDCT class.

Once we have decoded the DC and AC values for an MCU, we rearrange the MCU and

undo the zigzag encoding by calling the rearrange_using_zigzag and then we perform
inverse DCT on the decoded MCU.

The BuildMatrix method will return the inverse DCT matrix and the value of the DC

coefficient. Remember, this inverse DCT matrix is only for one tiny 8x8 MCU (Minimum
Coded Unit) matrix.  We will be doing this for all the individual MCUs in the whole image

file.

Displaying Image on screen
Let’s modify our code a little bit and create a Tkinter Canvas and paint each MCU after

decoding it in the StartOfScan method.

def Clamp(col):
col = 255 if col>255 else col
col = 0 if col<0 else col
return int(col)

def ColorConversion(Y, Cr, Cb):
R = Cr*(2-2*.299) + Y
B = Cb*(2-2*.114) + Y
G = (Y - .114*B - .299*R)/.587
return (Clamp(R+128),Clamp(G+128),Clamp(B+128) )
def DrawMatrix(x, y, matL, matCb, matCr):
for yy in range(8):
for xx in range(8):
c = "#%02x%02x%02x" % ColorConversion(
matL[yy][xx], matCb[yy][xx], matCr[yy][xx]
)
x1, y1 = (x * 8 + xx) * 2, (y * 8 + yy) * 2
x2, y2 = (x * 8 + (xx + 1)) * 2, (y * 8 + (yy + 1)) * 2
w.create_rectangle(x1, y1, x2, y2, fill=c, outline=c)

class JPEG:
# -----



def StartOfScan(self, data, hdrlen):
data,lenchunk = RemoveFF00(data[hdrlen:])
st = Stream(data)
oldlumdccoeff, oldCbdccoeff, oldCrdccoeff = 0, 0, 0
for y in range(self.height//8):
for x in range(self.width//8):
matL, oldlumdccoeff = self.BuildMatrix(st,0,
self.quant[self.quantMapping[0]], oldlumdccoeff)
matCr, oldCrdccoeff = self.BuildMatrix(st,1,
self.quant[self.quantMapping[1]], oldCrdccoeff)
matCb, oldCbdccoeff = self.BuildMatrix(st,1,
self.quant[self.quantMapping[2]], oldCbdccoeff)
DrawMatrix(x, y, matL.base, matCb.base, matCr.base )
return lenchunk+hdrlen

if __name__ == "__main__":
from tkinter import *
master = Tk()
w = Canvas(master, width=1600, height=600)
w.pack()
img = JPEG('profile.jpg')
img.decode()
mainloop()

Let’s start with the ColorConversion and Clamp functions. ColorConversion takes in the

Y, Cr, and Cb values, uses a formula to convert these values to their RGB counterparts,
and then outputs the clamped RGB values. You might wonder why we are adding 128 to

the RGB values. If you remember, before JPEG compressor applies DCT on the MCU, it
subtracts 128 from the color values. If the colors were originally in the range [0,255],

JPEG puts them into [-128,+128] range. So we have to undo that effect when we
decode the JPEG and that is why we are adding 128 to RGB. As for the Clamp, during

the decompression, the output value might exceed [0,255] so we clamp them between
[0,255] .

In the DrawMatrix method, we loop over each 8x8 decoded Y, Cr, and Cb matrices and

convert each element of the 8x8 matrices into RGB values. After conversion, we draw
each pixel on the Tkinter canvas using the create_rectangle method. You can find the

complete code on GitHub. Now if you run this code, my face will show up on your
screen

Conclusion

https://github.com/yasoob/Baseline-JPEG-Decoder


Oh boy! Who would have thought it would take 6000 word+ explanation for showing my

face on the screen. I am amazed by how smart some of these algorithm inventors are! I
hope you enjoyed this article as much as I enjoyed writing it. I learned a ton while writing

this decoder. I never realized how much fancy math goes into the encoding of a simple
JPEG image. I might work on a PNG image next and try writing a decoder for a PNG

image. You should also try to write a decoder for a PNG (or some other format). I am
sure it will involve a lot of learning and even more hex fun

Either way, I am tired now. I have been staring at hex for far too long and I think I have

earned a well-deserved break. You all take care and if you have any questions please
write them in the comments below. I am super new to this JPEG coding adventure but I

will try to answer as much as I possibly can

Further reading
If you want to delve into more detail, you can take a look at a few resource I used while
writing this article. I have also added some additional links for some interesting JPEG

related stuff:

An illustrated guide to Unraveling the JPEG•
An extremely detailed article on JPEG Huffman Coding•

Let’s write a simple JPEG library. Uses C++•
Python 3 struct documentation•

Read this article on how FB used this knowledge about JPEG•
JPEG File layout and format•

An interesting presentation by Department of Defense on JPEG forensics•

https://parametric.press/issue-01/unraveling-the-jpeg/
https://www.impulseadventure.com/photo/jpeg-huffman-coding.html
https://koushtav.me/jpeg/tutorial/c++/decoder/2019/03/02/lets-write-a-simple-jpeg-library-part-2/
https://docs.python.org/3/library/struct.html
https://engineering.fb.com/android/the-technology-behind-preview-photos/
http://vip.sugovica.hu/Sardi/kepnezo/JPEG%20File%20Layout%20and%20Format.htm
https://dfrws.org/sites/default/files/session-files/pres-using_jpeg_quantization_tables_to_identify_imagery_processed_by_software.pdf

