
LAMMPS Guide

Last updated 9 February, 2023 • 4 min read

From the LAMMPS README file:

LAMMPS is a classical molecular dynamics simulation code
designed to run efficiently on parallel computers. It was
developed at Sandia National Laboratories, a US
Department of Energy facility, with funding from the DOE. It
is an open-source code, distributed freely under the terms of
the GNU Public License (GPL).

LAMMPS MPI and package install
LAMMPS has various options for building and installing different settings
and packages. Due to LAMMPS having a lot of custom builds and various
package options, we recommend users to install LAMMPS locally under
their /home directories or team’s /shared folder for ease of use and the
current needs for the user or team. Reading the documentation pages for
LAMMPS, we can compile LAMMPS with CMake or with regular make
commands. We will use the GCC compiler in this example:

 Step 1: Create directory project and download LAMMPS:





 Step 2: Edit LAMMPS makefile

Create a directory for our LAMMPS project.

mkdir -pv ~/software/lammps
cd ~/software/lammps

Download the latest Lammps Linux tarball file from their download page by using wget.

Go to: https://www.lammps.org/download.html

Copy the download link for the LAMMPS stable release and paste in the wget command command.
wget pasteDownloadLinkforLammpsTarballHere

#Unpack the tarball and cd into the new lammps directory that is created
#This example will show the LAMMPS 23Jun2022 release

tar -xvf lammps-stable.tar.gz
cd lammps-23Jun2022

Directory structure should look like the following:

~/software/lammps/lammps-23Jun2022

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

›



 Step 3: Build LAMMPS packages

#LAMMPS allows for CMake or regular make builds
#In this example we will show the regular make build and install LAMMPS packages with make
#Going to build the MPI version of Lammps

cd lammps-23Jun2022/src/MAKE

#Make a copy of the Makefile.mpi and rename it to Makefile.origmpi

cp Makefile.mpi Makefile.origmpi

#Copy the Makefile.omp file from the src/MAKE/OPTIONS folder to point to the openmpi version available on HPC

cp OPTIONS/Makefile.omp Makefile.mpi
vi Makefile.mpi
Press i to go into Insert mode in the VI editor

#Go down to the MPI Library section and update the paths to point to the ones available from the HPC openmpi module

MPI_INC = -I/gpfs/sharedfs1/admin/hpc2.0/apps/openmpi/4.1.4/include/ -DMPICH_SKIP_MPICXX -DOMPI_SKIP_MPICXX=1
MPI_PATH = -L/gpfs/sharedfs1/admin/hpc2.0/apps/openmpi/4.1.4/lib/
MPI_LIB = -lmpi -lpthread

#Most software installs do not use custom edited Makefiles and contain configure scripts to make configuring and building easier.
#If the build would need fftw3, the FFT library section would need to be updated
#Now we need to add some Link flags at the top to have LAMMPS build the MPI executabe with gfortran and gcc(g++)
#If the build would need blas or lapack libraries, they would need to be added to the Link and LIB flags at the top

FC = mpifort
CC = mpicc
CXX = mpicxx
CCFLAGS = -g -O3 -fopenmp -std=c++11
SHFLAGS = -fPIC
DEPFLAGS = -M

LINK = mpicxx
LINKFLAGS = -g -O3 -fopenmp -std=c++11 -L/gpfs/sharedfs1/admin/hpc2.0/apps/gcc/11.3.0/bin/gfortran -lgfortran
LIB = -lstdc++ -lgfortran
SIZE = size

ARCHIVE = ar
ARFLAGS = -rc
SHLIBFLAGS = -shared -rdynamic

#Once entered, save the Makefile with the following key strokes

ESC key (to get out of Insert mode)
:wq!

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

›



 Step 4: Build LAMMPS

#Go back one directory to the /src folder:

cd ..

#Should show the following path:

~/software/lammps/lammps-23Jun2022/src/

#Load the gcc/11.3.0 and openmpi/4.1.4 modules before building

module load gcc/11.3.0 openmpi/4.1.4

Install needed LAMMPS packages for run with the following command

make yes-packagenamehere

Here are some example Commands to install the openmp, qeq, meam, and reaxff LAMMPS packages:

make yes-openmp

make yes-qeq

make yes-meam

make yes-reaxff

After installing the needed packages, the following command can confirm if the packages installed:

make ps

Or if a list of installed packages is needed without showing the ones that are not installed, the following command can help:

make pi

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

›



 Step 5: Create a Module file for LAMMPS
We can create a module file for LAMMPS that so that we can conveniently
load LAMMPS and it's dependencies. The name that you choose for your
module file is important as that is what module uses to reference it. We will
make our name different by adding the "-mine" suffix to help separate it from
the system installed vasp.

Build the LAMMPS MPI executable, the -j flag tells mpi to build with more than 1 core

make -j4 mpi

LAMMPS should start building the executable with the packages that have been installed in the previous step
Once LAMMPS finishes building under the /src folder, LAMMPS will generate an executable called
lmp_mpi

#Go back to the main lammps folder

cd ~/software/lammps/lammps-23Jun2022

#Create a /bin folder to move the lmp_mpi executable into

mkdir bin

#Copy the lmp_mpi exectuable over to this new /bin folder

rsync -a --progress ~/software/lammps/lammps-23Jun2022/src/lmp_mpi ~/software/lammps/lammps-23Jun2022/bin/

#Continue to the next step to create a module file for the new Lammps version
#If a module is not needed, the path can be specified in a submission script to run the LAMMPS input file

~/software/lammps/lammps-23Jun2022/bin/lmp_mpi -i restOfLammpsCommandHere

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

›



mkdir -p ~/mod/lammps
cd ~/mod/lammps
vi 23Jun2022-mine

1
2
3
4
5

›

If you are interested, in learning about module files you can read man
modulefile

Finally, make sure that module knows to look in your ~/mod directory for
your module files by setting the MODULEPATH environmental variable:

Reload your ~/.bashrc file in your current shell:

To install packages AFTER lammps is installed, go to the LAMMPS installer
/src folder:

Then enter the following depending on which packages that would like to be
installed:

#%Module1.0

Throw an error if any of these modules are loaded.
conflict lammps

Load the particular GCC and openmpi versions we used for the lammps build
module load gcc/11.3.0
module load openmpi/4.1.4

Modify the PATH to use our compiled LAMMPS. Do not use a trailing slash.
prepend-path PATH ~/software/lammps/lammps-23Jun2022/bin/

1
2
3
4
5
6
7
8
9

10
11
12
13

›

nano ~/.bashrc # Add the lines below.
1
2
3

›

My modules
source /etc/profile.d/modules.sh
MODULEPATH=${HOME}/mod:${MODULEPATH}

1
2
3
4
5

›

1 source ~/.bashrc
2 # Finally Now we can load and run our VASP module
3 module load lammps/23Jun2022-mine
4 which lmp_mpi
5 lmp_mpi -h

1
2
3
4
5
6

›

cd ~/software/lammps/lammps-23Jun2022/src
1
›

Example Commands to install the qeq, meam, and reaxff LAMMPS
packages:

After installing the needed packages, the following command can confirm if
the packages installed:

Or if a list of installed packages is needed without showing the ones that are
not installed, the following command can help:

Once installing the needed packages, lammps would need to be rebuilt from
the previous build steps to invoke the changes.

Once LAMMPS rebuilds with the new packages, the rebuilt lmp_mpi
executable would need to be moved back to the /bin folder

If the lammps/23Jun2022-mine module is currently loaded, it would need to
be unloaded and reloaded to have the changes take into effect.

 Step 6: Running LAMMPS with MPI

 6.2. Package details — LAMMPS documentation

make yes-qeq

make yes-meam

make yes-reaxff

1
2
3
4
5
6

›

make ps
1
›

make pi
1
›

make mpi
1
›

#Copy the lmp_mpi exectuable over to this new /bin folder
rsync -a --progress ~/software/lammps/lammps-23Jun2022/src/lmp_mpi ~/software/lammps/lammps-23Jun2022/bin/1

2
3

›

module unload lammps

module load lammps/23Jun2022-mine
1
2
3
4

›



https://docs.lammps.org/Packages_details.html

The lmp_mpi MPI build above should automatically look for the
openmpi/4.1.4 HPC module.

The openmpi/4.1.4 module would need to be loaded when the lmp_mpi
executable is called.

Running LAMMPS with MPI would need specific MPI command line options
to bypass issues when ignoring the old openib fabric and running on the new
UCX framework.

These settings are automatically loaded when the openmpi/4.1.4 module is
loaded in the environment.

This feature of the module allows the options to not be specified in the
mpirun or mpiexec commands.

The following example will show how to run the LAMMPS MPI executable by
spawning 4 MPI threads and run the specified lammpsInputFileHere input
file and save the data output to a file called OutPutFileName.txt

mpirun -np 4 lmp_mpi -in lammpsInputFileHere > OutPutFileName.txt

 Step 7: The updated openmpi/4.1.4 modules
For extra information, the options that the openmpi/4.1.4 and
openmpi/4.1.4-ics modules set will be explained here (and are not needed
when running the lmp_mpi command in a submission script):

mpirun --mca opal_warn_on_missing_libcuda 0 -mca pml ucx --mca btl

^vader,tcp,openib,uct -x UCX_NET_DEVICES=mlx5_0:1 -np 4

~/software/lammps/lammps-23Jun2022/bin/lmp_mpi -in

restOfLammpsCommandHere

Lets break down the mpi command line options:

The --mca opal_warn_on_missing_libcuda 0 option disables the CUDA
warning message

The -mca pml ucx tells mpi to run using the UCX framework for the point-
to-point message layer

The --mca btl ^vader,tcp,openib,uct tells MPI to not run on the
vader,tcp,openib, or uct frameworks

The -x UCX_NET_DEVICES=mlx5_0:1 option tells MPI to target the Infiniband
card mlx5_0 and connect to the card on port 1

The -np 4 flag tells MPI to run on 4 MPI threads

The ~/software/lammps/lammps-23Jun2022/bin/lmp_mpi path tells MPI to



run the lmp_mpi executable under the given path, but if there is a local
module loaded, the path to the lmp_mpi executable would not be needed.
Instead the lmp_mpi command can replace the full path above.

-np 4 lmp_mpi

The -i restOfLammpsCommandHere indicates the command line options
needed for LAMMPS, in this case the -i refers to the LAMMPS input file for
LAMMPS to process.

Or a different way to pass the input file and generate an output file from the
given input, can be the following command:

lmp_mpi -in lammpsInputFileHere > OutPutFileName.txt

Running LAMMPS
If possible, you should always first run your code on your local machine just
to ensure that your code is correct. You can do it on a small dataset and a
small configuration (single processor, etc.). This way you would be able to
catch any errors not related to the cluster even before submitting your job.

Below we show a step-by-step example of how to run a simple LAMMPS
simulation in the cluster. We have used one of the examples bundled with
LAMMPS distribution, namely, flow .

Copy your code and data to the cluster
We are assuming that you are using the terminal to copy your data. If you
are using a GUI client, you should be able to do it in a visual way.

Open a terminal to connect to the cluster and create a directory for the
experiment.

The code from the example can be downloaded using the chunk of code
below.

Now, your lammpstest directory should have the following files





mkdir lammpstest && cd lammpstest
1
›

cloning lammps project
git clone https://github.com/lammps/lammps.git
moving the files from the "flow" example to our working directory
mv lammps/examples/flow* .
deleting the lammps project
rm -rf lammps

1
2
3
4
5
6

›

https://kb.uconn.edu/space/SH/26033652980

SLURM script
SLURM is the scheduler program for our cluster. In the cluster, we need to
create a simple script that would tell SLURM how to run your job. For details
see the SLURM Guide.

You can either create this script in the terminal using any editor such as
nano , or you can create it in your local machine and use the scp command
to copy it into the cluster. We can put this script in the lammpstest directory,
and it would contain the following lines:

This script is telling how many processors we need as well as which files the
output (and errors) should be written to. Basically, the lines starting with
#SBATCH provide the switches for the sbatch command, which submits a
job to SLURM . Note that we have told SLURM to email us at every event for
this job such as begin / queued / end / error etc.

The last line is the command that would be run as the job. It invokes the
lammps module with the input ~/lammpstest/flow/in.flow.couette .

 If you are using mpirun in your submission scripts, it is
recommended to use the following command syntax

ls -lt
total 40
-rw-r--r-- 1 netid domain users 5443 Nov 10 09:58 log.27Nov18.flow.pois.g++.4
-rw-r--r-- 1 netid domain users 5444 Nov 10 09:58 log.27Nov18.flow.pois.g++.1
-rw-r--r-- 1 netid domain users 5445 Nov 10 09:58 log.27Nov18.flow.couette.g++.4
-rw-r--r-- 1 netid domain users 5441 Nov 10 09:58 log.27Nov18.flow.couette.g++.1
-rw-r--r-- 1 netid domain users 1503 Nov 10 09:58 in.flow.pois
-rw-r--r-- 1 netid domain users 1505 Nov 10 09:58 in.flow.couette

1
2
3
4
5
6
7
8

›



$ cd ~/lammpstest
$ cat lammps_job.sh

#!/bin/bash
#SBATCH -N 1
#SBATCH -n 36
#SBATCH --constraint='skylake'
#SBATCH -o lammps_sim_out-%J.txt
#SBATCH -e lammps_sim_out-%J.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=user@uconn.edu
module load openmpi/4.1.4
mpiexec lmp_mpi < in.flow.couette

1
2
3
4
5
6
7
8
9

10
11
12
13

›

mpirun lmp_mpi -in inputfile
1
›

https://kb.uconn.edu/space/SH/26032963685

The lammps documentation site mentioned this note if mpirun is being used
with the < operator:

The redirection operator < will not always work when
running in parallel with mpirun ; for those systems the -in
form is required.

Submitting your job
Before you submit your job make sure that the LAMMPS module is loaded, as
described in the first part of this guide. When you are ready, simply do the
following:

Checking output
When the job is done we would get email notifications. You can also check
your job status using the sjobs command. We can check on the lammps
output itself using tail :

 Note that you should replace JOBID with the id associated to the
submitted job.



sbatch lammps_job.sh
1
›



cat lammps_sim_out-JOBID.txt
1
›

