
HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM

on HPE Cray Supercomputing EX Systems (1.3.1) (S-8065)

Part Number: S-8065
Published: June 2025

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray
Supercomputing EX Systems (1.3.1) (S-8065)

Part Number: S-8065
Published: June 2025

Table of contents

Copyright and Version

Source Availability

About the USS User Guide

Containers on Compute Nodes (COCN) Usage

Introduction to COCN

Build and Run an MPI Application Using Podman

Prerequisites for Building and Running an MPI Application Using Podman

Prepare the MPI Application for Podman

Build and Run the Podman Image

Build and Run an MPI Application Using Apptainer

Prerequisites for Building and Running an MPI Application Using Apptainer

Prepare the MPI Application for Apptainer

Build and Run the Apptainer Image

Build and Run an MPI Application Using SingularityCE

Prerequisites for Building and Running an MPI Application Using SingularityCE

Prepare the MPI Application for SingularityCE

Build and Run the SingularityCE Image

PBS Professional Usage

Parallel Application Launch Service

Control HPE Slingshot Network Resources Using PBS and PALS

Run an Application with PBS in Batch Mode

Run an Application with PBS in Interactive Mode

ATOM Energy Reports

Use the DRC2 Feature

Slurm Usage

Control HPE Slingshot Network Resources Using Slurm

Workload Manager Plugins

Run an Application with Slurm in Batch Mode

Run an Application with Slurm in Interactive Mode

Use the DRC2 Feature

DVS Usage

DVS Environment Variables

Low Noise Mode

Download HPE Cray Supercomputing EX Software

Copy and Paste Commands from this Guide

Documentation Conventions

Markdown Format

File Formats

Typographic Conventions

Annotations

Command Prompt Conventions

Copyright and Version

© Copyright 2022-2025 Hewlett Packard Enterprise Development LP. All third-party marks are the property of their respective owners.

USS: 1.3.1-LocalBuild

Doc git hash: 6811163d2c8f7f0996c37783313da9b7e6f982b4

Generated: Thu Jun 26 2025

Source Availability

This product includes code licensed under certain open source licenses which require source compliance. The corresponding source for these
components is available upon request. This offer is valid to anyone in receipt of this information and shall expire three years following the
date of the final distribution of this product version by Hewlett Packard Enterprise Company. To obtain such source code, please check if the
code is available in the HPE Software Center at https://myenterpriselicense.hpe.com/cwp-ui/software but, if not, contact your HPE service
representative.

About the USS User Guide

This document provides usage information and relevant examples for the User Services Software (USS). It is intended for software
developers, engineers, scientists, and other users of USS.

Release Information

This publication supports the following software, which is included during the installation process and can be manually configured later by a
system administrator:

Containers on compute nodes (COCN)

Podman

SingularityCE

PBS Professional 2024.1.1

Slurm 24.05.4

HPE supports this software only if it is installed on HPE Cray Supercomputing EX Systems with:

CSM 1.6 and COS 25.3.x (based on SLES 15 SP6)

HPCM 1.13 and one of the following operating systems:

SLES 15 SP6

RHEL 9.4 or RHEL 9.5

COS 25.3.x (based on SLES 15 SP6)

For CPE customers using the WLM support ISO, the following operating systems are supported:

RHEL 9.4 (x86_64, aarch64, or a combination of both)

RHEL 8.10 (x86_64 only)

SLES 15 SP6

Example Software Commands

Examples in this document include specific software commands. However, it is beyond the scope of this guide to provide complete details

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

5

https://myenterpriselicense.hpe.com/cwp-ui/software

for third-party software. Examples are provided with the caveat that they may be out of sync with changes made by the third-party vendor.
For detailed information and documentation on this software, go to:

Kubernetes - https://kubernetes.io/docs/home

PBS Professional https://community.altair.com/community?id=altair_product_documentation

Podman - https://docs.podman.io/en/latest

SingularityCE - https://sylabs.io/docs

Slurm - https://slurm.schedmd.com

Some examples in this document use user@hostname to refer to the application node, which can be a User Access Node (UAN), User Access
Instance (UAI), or login node depending on the system. On a system running Cray System Management (CSM), an application node is a UAN
or UAI. On a system running HPE Performance Cluster Manager (HPCM) software, an application node is a login node.

Containers on Compute Nodes (COCN) Usage

Subtopics

Introduction to COCN
The HPE Cray Supercomputing EX system can run HPC applications using containers on compute nodes (COCN). Containers are a tool
that enables an application to be packaged with required libraries and environment settings. This allows user software to be isolated
from the runtime platform in a way that improves portability and security. This section is primarily focused on Message Passing
Interface (MPI) applications, and it describes how to build and run containerized applications using Cray MPI.
Build and Run an MPI Application Using Podman
This section describes how to build and run a Cray MPI application as a rootless user with Podman. The following procedure uses an
x86_64 system installed with COS Base (based on SLES), and the example container image that is created uses a SLES base container
image. On a system installed with RHEL, use the same commands listed in this procedure but use a base container image from RHEL
instead. For more information on SLES base container images, refer to SUSE's Container Guide. For more information on RHEL base
container images, refer to Red Hat's EcoSystem Catalog.
Build and Run an MPI Application Using Apptainer
This section describes how to build and run a Cray MPI application as a rootless user with Apptainer. The following procedure uses an
x86_64 system installed with COS Base (based on SLES), and the example container image that is created uses a SLES base container
image. On a system installed with RHEL, use the same commands listed in this procedure but use a base container image from RHEL
instead. For more information on SLES base container images, refer to SUSE's Container Guide. For more information on RHEL base
container images, refer to Red Hat's EcoSystem Catalog.
Build and Run an MPI Application Using SingularityCE
This section describes how to build and run a Cray MPI application as a rootless user with SingularityCE. The following procedure uses
an x86_64 system installed with COS Base (based on SLES), and the example container image that is created uses a SLES base container
image. On a system installed with RHEL, use the same commands listed in this procedure but use a base container image from RHEL
instead. For more information on SLES base container images, refer to SUSE's Container Guide. For more information on RHEL base
container images, refer to Red Hat's EcoSystem Catalog.

Introduction to COCN

The HPE Cray Supercomputing EX system can run HPC applications using containers on compute nodes (COCN). Containers are a tool that
enables an application to be packaged with required libraries and environment settings. This allows user software to be isolated from the
runtime platform in a way that improves portability and security. This section is primarily focused on Message Passing Interface (MPI)
applications, and it describes how to build and run containerized applications using Cray MPI.

Prerequisites for Creating Containers

To run containers on the compute nodes of an HPE Cray Supercomputing EX system, users must be signed into the application node. On a
system running Cray System Management (CSM), an application node is a User Access Node (UAN) or User Access Instance (UAI). On a
system running HPE Performance Cluster Manager (HPCM) software, an application node is a login node.

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

6

https://kubernetes.io/docs/home/
https://community.altair.com/community?id=altair_product_documentation&spa=1&filter=product%253D20069018db0348102af07608f4961995%255Elanguage%253Denglish&p=1&d=asc
https://docs.podman.io/en/latest/
https://sylabs.io/docs/
https://slurm.schedmd.com/
https://documentation.suse.com/en-us/container/all/html/Container-guide/index.html#container-bci-intro
https://catalog.redhat.com/software/base-images
https://documentation.suse.com/en-us/container/all/html/Container-guide/index.html#container-bci-intro
https://catalog.redhat.com/software/base-images
https://documentation.suse.com/en-us/container/all/html/Container-guide/index.html#container-bci-intro
https://catalog.redhat.com/software/base-images

Container Software

This publication describes running the following container software on HPE Cray Supercomputing EX systems:

Podman

Podman is a daemonless, open-source container engine that finds, shares, builds, runs, and deploys applications using Open Containers
Initiative (OCI) containers and container images.

Apptainer

Apptainer is a free and open-source container platform that allows you to create and run applications in containers in a simple, portable,
fast, and secure manner.

SingularityCE

SingularityCE is an open-source container platform that facilitates the creation of container images on one machine and their execution
across cloud and HPC clusters. It is commonly used to execute AI and machine learning workloads on HPC cluster computers.

Build and Run an MPI Application Using Podman

This section describes how to build and run a Cray MPI application as a rootless user with Podman. The following procedure uses an x86_64
system installed with COS Base (based on SLES), and the example container image that is created uses a SLES base container image. On a
system installed with RHEL, use the same commands listed in this procedure but use a base container image from RHEL instead. For more
information on SLES base container images, refer to SUSE's Container Guide. For more information on RHEL base container images, refer to
Red Hat's EcoSystem Catalog.

Subtopics

Prerequisites for Building and Running an MPI Application Using Podman
Prepare the MPI Application for Podman
Build and Run the Podman Image

Prerequisites for Building and Running an MPI Application Using Podman

Each compute node that is used to run the MPI application must have access to the container image.

The container image built by Podman uses an overlay file system, and rootless Podman users use the fuse-overlayfs storage driver to
access the storage. Lustre and other distributed file systems, such as Network File System (NFS), are not supported when running in
rootless mode because these file systems do not understand user namespaces.

To provide access to a shared container image on shared network storage from the compute nodes, a copy of the image is made to the
network storage in a compressed, read-only SquashFS format. First, the container image is built from the application node on local
storage in the OverlayFS format. Then, the image is migrated to shared network storage in the SquashFS format using the m2s utility.
Finally, the MPI application is run on the compute nodes using a workload manager with Podman by using a command-line argument to
specify the location of the shared image.

COCN has been installed on an application node and compute nodes.

Prepare the MPI Application for Podman

Create and Build an MPI Application on the Application Node

1. SSH into the application node as a rootless user.

ssh user@hostname

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

7

https://podman.io/
https://apptainer.org/
https://sylabs.io/singularity/
https://documentation.suse.com/en-us/container/all/html/Container-guide/index.html#container-bci-intro
https://catalog.redhat.com/software/base-images

2. Create the test program in a file called mpi_hello.c.

3. Verify the correct modules are loaded, including cray-mpich.

4. Build the MPI application.

Find and Copy the Shared Libraries Needed by the MPI Application

1. Use the ldd command to list the shared libraries needed.

user@hostname> cat mpi_hello.c
/* MPI hello world example */
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
int main(int argc, char **argv)
{
 int rank;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 system("whoami");
 printf("Hello from rank %d\n", rank);
 MPI_Finalize();
 return 0;
}

user@hostname> which cc
/opt/cray/pe/craype/<CPE_VERSION>/bin/cc
user@hostname> module list
Currently Loaded Modulefiles:
 1) craype-x86-rome 6) craype/<CPE_VERSION>
 2) libfabric/<LIBFABRIC_VERSION> 7) cray-dsmml/<DSMML_VERSION>
 3) craype-network-ofi 8) cray-mpich/<MPICH_VERSION>
 4) perftools-base/<PERFTOOLS_VERSION> 9) cray-libsci/<LIBSCI_VERSION>
 5) cce/<CCE_VERSION> 10) PrgEnv-cray/<PRGENV_VERSION>

user@hostname> cc mpi_hello.c -o mpi_hello.x

user@hostname> ldd mpi_hello.x
linux-vdso.so.1 (0x00007ffcac3eb000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f52cda4e000)
libmpi_cray.so.12 => /opt/cray/pe/lib64/libmpi_cray.so.12 (0x00007f52cb3da000)
libquadmath.so.0 => /usr/lib64/libquadmath.so.0 (0x00007f52cb394000)
libmodules.so.2 =>
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libmodules.so.2
(0x00007f52cb379000)
libfi.so.2 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libfi.so.2
(0x00007f52cadb3000)
libcraymath.so.2 =>
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcraymath.so.2
(0x00007f52caccd000)
libf.so.2 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libf.so.2
(0x00007f52cac39000)
libu.so.2 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libu.so.2
(0x00007f52cab2d000)
libcsup.so.1 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcsup.so.1
(0x00007f52cab25000)
libc.so.6 => /lib64/libc.so.6 (0x00007f52ca92e000)
/lib64/ld-linux-x86-64.so.2 (0x00007f52cda72000)
libfabric.so.1 => /opt/cray/libfabric/<LIBFABRIC_VERSION>/lib64/libfabric.so.1

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

8

2. Find the shared libraries needed in the container image from the output of the ldd command.

The SLES base container image used to create the MPI application image contains the libraries that are needed by the MPI application in
/usr/lib64 and /lib64. The libraries in /opt/cray are not included in the SLES base container image.

3. Copy the shared libraries needed in the container image into a subdirectory.

Build and Run the Podman Image

Build the Container Image on Local Container Image Storage

Build the container image on the local container image storage in $PODMAN_GRAPHROOT on the application node.

1. Set the location used for local container image storage for the rootless user.

a. Find the location of the local storage directory for container image storage for rootless users.

The default local storage directory used is /scratch/cocn/containers. Each rootless user uses a subdirectory in the
/scratch/cocn/containers directory that is automatically created by Podman.

b. Set an environment variable for the directory chosen for container storage for the rootless user.

2. Create the Dockerfile.

(0x00007f52ca839000)
libatomic.so.1 => /usr/lib64/libatomic.so.1 (0x00007f52ca82f000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f52ca80b000)
librt.so.1 => /lib64/librt.so.1 (0x00007f52ca801000)
libpmi.so.0 => /opt/cray/pe/lib64/libpmi.so.0 (0x00007f52ca7de000)
libpmi2.so.0 => /opt/cray/pe/lib64/libpmi2.so.0 (0x00007f52ca7bb000)
libm.so.6 => /lib64/libm.so.6 (0x00007f52ca66d000)
libgfortran.so.5 => /usr/lib64/libgfortran.so.5 (0x00007f52ca399000)
libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007f52ca154000)
libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007f52ca130000)
librdmacm.so.1 => /usr/lib64/librdmacm.so.1 (0x00007f52ca10f000)
libibverbs.so.1 => /usr/lib64/libibverbs.so.1 (0x00007f52ca0ec000)
libpals.so.0 => /opt/cray/pals/<PALS_VERSION>/lib/libpals.so.0
(0x00007f52ca0e4000)
libnl-3.so.200 => /usr/lib64/libnl-3.so.200 (0x00007f52c9e00000)
libnl-route-3.so.200 => /usr/lib64/libnl-route-3.so.200 (0x00007f52c9a00000)

user@hostname> mkdir libs
user@hostname> cp /opt/cray/pe/lib64/libmpi_cray.so.12 libs
user@hostname> cp
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libmodules.so.2 libs
user@hostname> cp /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libfi.so.2 libs
user@hostname> cp
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcraymath.so.2 libs
user@hostname> cp /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libf.so.2 libs
user@hostname> cp /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libu.so.2 libs
user@hostname> cp /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcsup.so.1
libs
user@hostname> cp /opt/cray/libfabric/<LIBFABRIC_VERSION>/lib64/libfabric.so.1
libs
user@hostname> cp /opt/cray/pe/lib64/libpmi.so.0 libs
user@hostname> cp /opt/cray/pe/lib64/libpmi2.so.0 libs
user@hostname> cp /opt/cray/pals/<PALS_VERSION>/lib/libpals.so.0 libs

user@hostname> export
PODMAN_GRAPHROOT=/scratch/cocn/containers/$USER/storage

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

9

3. Build the Podman image.

4. List the Podman images.

Migrate the Container Image from Local to Shared Container Image Storage

Migrate the container image to the shared container image storage in $SHARED_CONTAINERS_STORAGE.

1. Save the path chosen for storing container images in $SHARED_CONTAINERS_STORAGE.

a. Find the location of the shared storage directory for container image storage for rootless users.

The container image storage must be on shared network storage that is accessible from the application node and the compute nodes
where Podman will be installed and configured. For example, you can use a directory on Lustre or NFS storage.

The example in this section uses a Lustre shared storage directory at /lus/snx11010/cocn/containers. Each rootless user uses a
subdirectory in the /lus/snx11010/cocn/containers directory. The subdirectory is automatically created when the image is migrated
to shared storage using the following process.

b. Set an environment variable for the directory chosen for container storage for the rootless user.

2. Initialize the shared container image storage.

Before each rootless user migrates an image for the first time, initialize the shared container image storage. This step is not necessary
for later migrations by the same user.

3. Migrate the image to the SquashFS format on shared container image storage.

4. List the container images on local and shared storage.

The images on shared storage have the R/O flag set to true to indicate that they are read-only. These images are accessible from the
compute nodes.

user@hostname> vim Dockerfile.mpi_hello
user@hostname> cat Dockerfile.mpi_hello
FROM registry.suse.com/bci/bci-base:latest
COPY libs/* /usr/local/lib
COPY mpi_hello.x /usr/local/bin
ENV PATH=/usr/local/bin:$PATH
ENV LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/host/usr/lib64

user@hostname> podman \
--root $PODMAN_GRAPHROOT \
build -f Dockerfile.mpi_hello -t mpi_hello:1.0 .

user@hostname> podman \
--root $PODMAN_GRAPHROOT \
images
REPOSITORY TAG IMAGE ID CREATED SIZE
localhost/mpi_hello 1.0 e3bd25fc994f 17 seconds ago 218 MB
registry.suse.com/bci/bci-base latest 8030200b6c3d 4 days ago 123 MB

user@hostname> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/storage

user@hostname> m2s init $SHARED_CONTAINERS_STORAGE

user@hostname> m2s --root $PODMAN_GRAPHROOT mig mpi_hello:1.0
$SHARED_CONTAINERS_STORAGE

user@hostname> podman \
--root $PODMAN_GRAPHROOT \
--storage-opt overlay.imagestore=$SHARED_CONTAINERS_STORAGE \
images

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

10

Run the MPI Application

1. Run the MPI application in the container on two compute nodes using Slurm.

For more information on Slurm, see the Slurm Usage section of this guide.

Be sure to run the MPI application commands for the Slingshot version on your system.

Run the following command for HPE Slingshot 100GB NIC on two compute nodes.

Run the following command for HPE Slingshot 200GB NIC on two compute nodes.

REPOSITORY TAG IMAGE ID CREATED SIZE R/O
localhost/mpi_hello 1.0 e3bd25fc994f 11 minutes ago 218 MB false
localhost/mpi_hello 1.0 e3bd25fc994f 11 minutes ago 218 MB true
registry.suse.com/bci/bci-base latest 8030200b6c3d 4 days ago 123 MB
false

user@hostname> srun --ntasks-per-node=1 --nodelist=cn01,cn02 \
podman \
--storage-driver overlay \
--root /tmp/$USER/storage \
--storage-opt overlay.ignore_chown_errors=true \
--storage-opt overlay.mount_program=/usr/bin/fuse-overlayfs-wrap \
--storage-opt overlay.imagestore=$SHARED_CONTAINERS_STORAGE \
run --rm \
--userns=keep-id \
--net=host --pid=host --ipc=host \
--device /dev/infiniband/rdma_cm \
--device /dev/infiniband/uverbs0 \
--mount type=bind,src=/etc/libibverbs.d,target=/etc/libibverbs.d \
--mount type=bind,src=/usr/lib64,target=/host/usr/lib64 \
--mount type=bind,src=/var/run/munge,target=/var/run/munge \
--mount type=bind,src=/var/spool/slurmd,target=/var/spool/slurmd \
--env 'SLURM_*' \
--env 'PALS_*' \
--env 'PMI_*' \
--env 'SLINGSHOT_*' \
--env LD_LIBRARY_PATH=/usr/local/lib:/host/usr/lib64:/host/usr/lib64/libibverbs \
mpi_hello:1.0 mpi_hello.x

user@hostname> srun --ntasks-per-node=1 --nodelist=cn01,cn02 \
podman \
--storage-driver overlay \
--root /tmp/$USER/storage \
--storage-opt overlay.ignore_chown_errors=true \
--storage-opt overlay.mount_program=/usr/bin/fuse-overlayfs-wrap \
--storage-opt overlay.imagestore=$SHARED_CONTAINERS_STORAGE \
run --rm \
--userns=keep-id \
--net=host --pid=host --ipc=host \
--device /dev/cxi0 \
--mount type=bind,src=/usr/lib64,target=/host/usr/lib64 \
--mount type=bind,src=/var/run/munge,target=/var/run/munge \
--mount type=bind,src=/var/spool/slurmd,target=/var/spool/slurmd \
--env 'SLURM_*' \
--env 'PALS_*' \
--env 'PMI_*' \
--env 'SLINGSHOT_*' \
--env LD_LIBRARY_PATH=/usr/local/lib:/host/usr/lib64 \
mpi_hello:1.0 mpi_hello.x

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

11

2. Run the MPI application in the container on two compute nodes using PBS.

For more information on PBS, see the PBS Professional Usage section of this guide.

a. Create a file with the Process Management Interface (PMI) environment variables.

Because the PMI_CONTROL_FD environment variable should not be passed to Podman, you cannot use the --env 'PMI_*' argument
with podman run. To avoid passing all of the needed PMI environment variables on the command line, you can use a file with the
required variables. You must create this file on shared network storage because it must be available from the compute nodes.

b. Run the MPI application commands for the Slingshot version on your system.

Run the following commands for HPE Slingshot 100GB NIC on two compute nodes.

Run the following commands for HPE Slingshot 200GB NIC on two compute nodes.

user@hostname> cat file-with-PMI-variables
PMI_JOBID
PMI_LOCAL_RANK
PMI_LOCAL_SIZE
PMI_RANK
PMI_SHARED_SECRET
PMI_SIZE
PMI_UNIVERSE_SIZE

user@hostname> qsub -I -l select=1:host=cn01+host=cn02,place=scatter
user@cn01> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/storage
user@cn01> module load cray-pals; module load cray-pmi
user@cn01> mpiexec -n 2 \
podman \
--storage-driver overlay \
--root /tmp/$USER/storage \
--storage-opt overlay.ignore_chown_errors=true \
--storage-opt overlay.mount_program=/usr/bin/fuse-overlayfs-wrap \
--storage-opt overlay.imagestore=$SHARED_CONTAINERS_STORAGE \
run --rm \
--userns=keep-id \
--net=host --pid=host --ipc=host \
--device /dev/infiniband/rdma_cm \
--device /dev/infiniband/uverbs0 \
--mount type=bind,src=/etc/libibverbs.d,target=/etc/libibverbs.d \
--mount type=bind,src=/usr/lib64,target=/host/usr/lib64 \
--mount type=bind,src=/var/run/palsd,target=/var/run/palsd \
--env 'PALS_*' \
--env 'SLINGSHOT_*' \
--env-file <full-path-to>/file-with-PMI-variables \
--env LD_LIBRARY_PATH=/usr/local/lib:/host/usr/lib64:/host/usr/lib64/libibverbs \
mpi_hello:1.0 mpi_hello.x

user@hostname> qsub -I -l select=1:host=cn01+host=cn02,place=scatter
user@cn01> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/storage
user@cn01> module load cray-pals; module load cray-pmi
user@cn01> mpiexec -n 2 \
podman \
--storage-driver overlay \
--root /tmp/$USER/storage \
--storage-opt overlay.ignore_chown_errors=true \
--storage-opt overlay.mount_program=/usr/bin/fuse-overlayfs-wrap \
--storage-opt overlay.imagestore=$SHARED_CONTAINERS_STORAGE \

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

12

Build and Run an MPI Application Using Apptainer

This section describes how to build and run a Cray MPI application as a rootless user with Apptainer. The following procedure uses an
x86_64 system installed with COS Base (based on SLES), and the example container image that is created uses a SLES base container image.
On a system installed with RHEL, use the same commands listed in this procedure but use a base container image from RHEL instead. For
more information on SLES base container images, refer to SUSE's Container Guide. For more information on RHEL base container images,
refer to Red Hat's EcoSystem Catalog.

Subtopics

Prerequisites for Building and Running an MPI Application Using Apptainer
Prepare the MPI Application for Apptainer
Build and Run the Apptainer Image

Prerequisites for Building and Running an MPI Application Using Apptainer

Each compute node used to run the MPI application must have access to the container image.

The container image built by Apptainer uses the Singularity Image Format (SIF), which is a read-only SquashFS format. The SIF
container images are supported on shared network storage provided by distributed file systems, such as NFS and Lustre.

The SIF container image must be built from the application node on shared network storage accessible from the compute nodes. The MPI
application is run on the compute nodes using a workload manager with Apptainer by using a command-line argument to specify the
location of the shared image.

Apptainer has been installed on an application node and compute nodes.

Prepare the MPI Application for Apptainer

Create and Build an MPI Application on the Application Node

1. SSH into the application node as a rootless user.

2. Create the test program in a file called mpi_hello.c.

run --rm \
--userns=keep-id \
--net=host --pid=host --ipc=host \
--device /dev/cxi0 \
--mount type=bind,src=/usr/lib64,target=/host/usr/lib64 \
--mount type=bind,src=/var/run/palsd,target=/var/run/palsd \
--env 'PALS_*' \
--env 'SLINGSHOT_*' \
--env-file <full-path-to>/file-with-PMI-variables \
--env LD_LIBRARY_PATH=/usr/local/lib:/host/usr/lib64 \
mpi_hello:1.0 mpi_hello.x

ssh user@hostname

user@hostname> cat mpi_hello.c
/* MPI hello world example */
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
int main(int argc, char **argv)

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

13

https://documentation.suse.com/en-us/container/all/html/Container-guide/index.html#container-bci-intro
https://catalog.redhat.com/software/base-images

3. Verify the correct modules are loaded, including cray-mpich.

4. Build the MPI application.

Find the Shared Libraries Needed by the MPI Application

1. Use ldd command to list the shared libraries needed.

{
 int rank;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 system("whoami");
 printf("Hello from rank %d\n", rank);
 MPI_Finalize();
 return 0;
}

user@hostname> which cc
/opt/cray/pe/craype/<CPE_VERSION>/bin/cc
user@hostname> module list
Currently Loaded Modulefiles:
 1) craype-x86-rome 6) craype/<CPE_VERSION>
 2) libfabric/<LIBFABRIC_VERSION> 7) cray-dsmml/<DSMML_VERSION>
 3) craype-network-ofi 8) cray-mpich/<MPICH_VERSION>
 4) perftools-base/<PERFTOOLS_VERSION> 9) cray-libsci/<LIBSCI_VERSION>
 5) cce/<CCE_VERSION> 10) PrgEnv-cray/<PRGENV_VERSION>

user@hostname> cc mpi_hello.c -o mpi_hello.x

user@hostname> ldd mpi_hello.x
linux-vdso.so.1 (0x00007ffcac3eb000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f52cda4e000)
libmpi_cray.so.12 => /opt/cray/pe/lib64/libmpi_cray.so.12 (0x00007f52cb3da000)
libquadmath.so.0 => /usr/lib64/libquadmath.so.0 (0x00007f52cb394000)
libmodules.so.2 =>
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libmodules.so.2
(0x00007f52cb379000)
libfi.so.2 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libfi.so.2
(0x00007f52cadb3000)
libcraymath.so.2 =>
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcraymath.so.2
(0x00007f52caccd000)
libf.so.2 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libf.so.2
(0x00007f52cac39000)
libu.so.2 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libu.so.2
(0x00007f52cab2d000)
libcsup.so.1 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcsup.so.1
(0x00007f52cab25000)
libc.so.6 => /lib64/libc.so.6 (0x00007f52ca92e000)
/lib64/ld-linux-x86-64.so.2 (0x00007f52cda72000)
libfabric.so.1 => /opt/cray/libfabric/<LIBFABRIC_VERSION>/lib64/libfabric.so.1
(0x00007f52ca839000)
libatomic.so.1 => /usr/lib64/libatomic.so.1 (0x00007f52ca82f000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f52ca80b000)
librt.so.1 => /lib64/librt.so.1 (0x00007f52ca801000)
libpmi.so.0 => /opt/cray/pe/lib64/libpmi.so.0 (0x00007f52ca7de000)
libpmi2.so.0 => /opt/cray/pe/lib64/libpmi2.so.0 (0x00007f52ca7bb000)
libm.so.6 => /lib64/libm.so.6 (0x00007f52ca66d000)
libgfortran.so.5 => /usr/lib64/libgfortran.so.5 (0x00007f52ca399000)

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

14

2. Find the shared libraries needed in the container image from the output of the ldd command.

The SLES base container image that is used to create the SIF image contains the libraries that are needed by the MPI application in
/usr/lib64 and /lib64. The libraries in /opt/cray are not included in the SLES base container image.

Build and Run the Apptainer Image

Set the Location for Shared SIF Container Image Storage

Save the path chosen for storing SIF container images in $SHARED_CONTAINERS_STORAGE.

1. Find the location of the shared storage directory for container image storage for rootless users.

The container image storage must be on shared network storage that is accessible from the application node and the compute nodes
where SingularityCE will be installed and configured. For example, you can use a directory on Lustre or NFS storage.

The example used in this section for a Lustre shared storage directory is /lus/snx11010/cocn/containers. Each rootless user uses a
subdirectory in the "/lus/snx11010/cocn/containers" directory.

2. Set an environment variable for the directory that will be used for storage of SIF images for the rootless user and create the directory.

Build and Run the Shared Container Image

There are two main approaches for executing MPI applications installed in a Apptainer container. The first approach is called the hybrid
model, which uses a combination of libraries provided on the host and in the container to provide the MPI implementation. The second
approach is called the bind model, which only uses the MPI implementation available on the host and does not include any MPI libraries in
the container.

For more information on using Apptainer and MPI applications with the hybrid and bind models, refer to Apptainer's User Guide.

Select either the hybrid or bind model to build and run the Apptainer image.

hybrid Model

1. Create the Apptainer definition file.

Create the definition file that will later be used to create the Apptainer image. Copy the list of shared libraries from the previous step
into the container. In the following example, the shared libraries are copied to /usr/local/lib/ in the container, but they can be copied to
any directory that is available in the container. The directory containing the shared libraries must be included in LD_LIBRARY_PATH.

libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007f52ca154000)
libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007f52ca130000)
librdmacm.so.1 => /usr/lib64/librdmacm.so.1 (0x00007f52ca10f000)
libibverbs.so.1 => /usr/lib64/libibverbs.so.1 (0x00007f52ca0ec000)
libpals.so.0 => /opt/cray/pals/<PALS_VERSION>/lib/libpals.so.0
(0x00007f52ca0e4000)
libnl-3.so.200 => /usr/lib64/libnl-3.so.200 (0x00007f52c9e00000)
libnl-route-3.so.200 => /usr/lib64/libnl-route-3.so.200 (0x00007f52c9a00000)

user@hostname> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/singularity
user@hostname> mkdir -p $SHARED_CONTAINERS_STORAGE

user@hostname> vim mpi-hybrid_hello.def
user@hostname> cat mpi-hybrid_hello.def
Bootstrap: docker
From: registry.suse.com/bci/bci-base:latest
%files
/opt/cray/pe/lib64/libmpi_cray.so.12 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libmodules.so.2 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libfi.so.2 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcraymath.so.2 /usr/local/lib/

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

15

https://apptainer.org/docs/user/main/mpi.html

2. Build the Apptainer image.

3. Run the MPI application in the container on the application node.

4. Run the MPI application in the container on two compute nodes using Slurm.

For more information on Slurm, see the Slurm Usage section of this guide.

The --bind argument is used to specify the directories that are mounted into the container from the nodes.

Be sure to run the MPI application commands for the Slingshot version on your system.

Run the following command for HPE Slingshot 100GB NIC on two compute nodes.

Run the following command for HPE Slingshot 200GB NIC on two compute nodes.

5. Run the MPI application in the container on two compute nodes using PBS.

For more information on PBS, see the PBS Professional Usage section of this guide.

The --bind argument is used to specify the directories that are mounted into the container from the nodes.

Be sure to run the MPI application commands for the Slingshot version on your system.

Run the following commands for HPE Slingshot 100GB NIC on two compute nodes.

/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libf.so.2 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libu.so.2 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcsup.so.1 /usr/local/lib/
/opt/cray/libfabric/<LIBFABRIC_VERSION>/lib64/libfabric.so.1 /usr/local/lib/
/opt/cray/pe/lib64/libpmi.so.0 /usr/local/lib/
/opt/cray/pe/lib64/libpmi2.so.0 /usr/local/lib/
/opt/cray/pals/<PALS_VERSION>/lib/libpals.so.0 /usr/local/lib/
/path/to/app/mpi_hello.x /usr/local/bin/
%environment
export LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/host/usr/lib64:/host/usr/lib64/libibverbs
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/lib64:/host/lib64

user@hostname> apptainer build --fakeroot \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif mpi-hybrid_hello.def

user@hostname> apptainer exec --fakeroot \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> srun -N2 apptainer exec --fakeroot \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/spool/slurmd \
--bind /var/run/munge \
--bind /etc/libibverbs.d \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> srun -N2 apptainer exec --fakeroot \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/spool/slurmd \
--bind /var/run/munge \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> qsub -I -l select=2,place=scatter

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

16

Run the following commands for HPE Slingshot 200GB NIC on two compute nodes.

bind Model

1. Create the Apptainer definition file.

Create the definition file that will later be used to create the Apptainer image. The shared libraries required by the MPI application are
not copied into the container and will need to be bind mounted from the host. The Cray shared libraries are available on the host in
/opt/cray/ and must be available in the container using $LD_LIBRARY_PATH.

2. Build the Apptainer image.

3. Run the MPI application in the container on the application node.

The /opt/cray directory is mounted into the container from the node.

4. Run the MPI application in the container on two compute nodes using Slurm.

user@cn> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/apptainer
user@cn> module load PrgEnv-cray; module load cray-pals; module load cray-pmi
user@cn> mpiexec -n2 apptainer exec --fakeroot \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/run/palsd \
--bind /etc/libibverbs.d \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> qsub -I -l select=2,place=scatter
user@cn> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/apptainer
user@cn> module load PrgEnv-cray; module load cray-pals; module load cray-pmi
user@cn> mpiexec -n2 apptainer exec --fakeroot \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/run/palsd \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> vim mpi-bind_hello.def
user@hostname> cat mpi-bind_hello.def
Bootstrap: docker
From: registry.suse.com/bci/bci-base:latest
%files
/path/to/app/mpi_hello.x /usr/local/bin/
%environment
export LD_LIBRARY_PATH=/opt/cray/pe/lib64:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/cray/pals/<PALS_VERSION>/lib
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/cray/libfabric/<LIBFABRIC_VERSION>/lib
64
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/host/usr/lib64:/host/usr/lib64/libibverbs
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/lib64:/host/lib64

user@hostname> apptainer build --fakeroot \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif mpi-bind_hello.def

user@hostname> apptainer exec --fakeroot \
--bind /opt/cray \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif /usr/local/bin/mpi_hello.x

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

17

For more information on Slurm, see the Slurm Usage section of this guide.

The --bind argument is used to specify the directories that are mounted into the container from the nodes.

Be sure to run the MPI application commands for the Slingshot version on your system.

Run the following command for HPE Slingshot 100GB NIC on two compute nodes.

Run the following command for HPE Slingshot 200GB NIC on two compute nodes.

5. Run the MPI application in the container on two compute nodes using PBS.

For more information on PBS, see the PBS Professional Usage section of this guide.

The --bind argument is used to specify the directories that are mounted into the container from the nodes.

Be sure to run the MPI application commands for the Slingshot version on your system.

Run the following commands for HPE Slingshot 100GB NIC on two compute nodes.

Run the following commands for HPE Slingshot 200GB NIC on two compute nodes.

user@hostname> srun -N2 apptainer exec --fakeroot \
--bind /opt/cray \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/spool/slurmd \
--bind /var/run/munge \
--bind /etc/libibverbs.d \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> srun -N2 apptainer exec --fakeroot \
--bind /opt/cray \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/spool/slurmd \
--bind /var/run/munge \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> qsub -I -l select=2,place=scatter
user@cn> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/apptainer
user@cn> module load PrgEnv-cray; module load cray-pals; module load cray-pmi
user@cn> mpiexec -n2 apptainer exec --fakeroot \
--bind /opt/cray \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/run/palsd \
--bind /etc/libibverbs.d \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> qsub -I -l select=2,place=scatter
user@cn> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/apptainer
user@cn> module load PrgEnv-cray; module load cray-pals; module load cray-pmi
user@cn> mpiexec -n2 apptainer exec --fakeroot \
--bind /opt/cray \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/run/palsd \
--bind /etc/libibverbs.d \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif /usr/local/bin/mpi_hello.x

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

18

Build and Run an MPI Application Using SingularityCE

This section describes how to build and run a Cray MPI application as a rootless user with SingularityCE. The following procedure uses an
x86_64 system installed with COS Base (based on SLES), and the example container image that is created uses a SLES base container image.
On a system installed with RHEL, use the same commands listed in this procedure but use a base container image from RHEL instead. For
more information on SLES base container images, refer to SUSE's Container Guide. For more information on RHEL base container images,
refer to Red Hat's EcoSystem Catalog.

Subtopics

Prerequisites for Building and Running an MPI Application Using SingularityCE
Prepare the MPI Application for SingularityCE
Build and Run the SingularityCE Image

Prerequisites for Building and Running an MPI Application Using SingularityCE

Each compute node that is used to run the MPI application must have access to the container image.

The container image built by SingularityCE uses the Singularity Image Format (SIF), which is a read-only SquashFS format. The SIF
container images are supported on shared network storage provided by distributed file systems, such as NFS and Lustre.

The SIF container image must be built from the application node on shared network storage accessible from the compute nodes. The MPI
application is run on the compute nodes using a workload manager with SingularityCE by using a command-line argument to specify the
location of the shared image.

SingularityCE has been installed on an application node and compute nodes.

Prepare the MPI Application for SingularityCE

Create and Build an MPI Application on the Application Node

1. SSH into the application node as a rootless user.

2. Create the test program in a file called mpi_hello.c.

3. Verify the correct modules are loaded, including cray-mpich.

ssh user@hostname

user@hostname> cat mpi_hello.c
/* MPI hello world example */
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
int main(int argc, char **argv)
{
 int rank;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 system("whoami");
 printf("Hello from rank %d\n", rank);
 MPI_Finalize();
 return 0;
}

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

19

https://documentation.suse.com/en-us/container/all/html/Container-guide/index.html#container-bci-intro
https://catalog.redhat.com/software/base-images

4. Build the MPI application.

Find the Shared Libraries Needed by the MPI Application

1. Use ldd command to list the shared libraries needed.

2. Find the shared libraries needed in the container image from the output of the ldd command.

The SLES base container image that is used to create the SIF image contains the libraries that are needed by the MPI application in

user@hostname> which cc
/opt/cray/pe/craype/<CPE_VERSION>/bin/cc
user@hostname> module list
Currently Loaded Modulefiles:
 1) craype-x86-rome 6) craype/<CPE_VERSION>
 2) libfabric/<LIBFABRIC_VERSION> 7) cray-dsmml/<DSMML_VERSION>
 3) craype-network-ofi 8) cray-mpich/<MPICH_VERSION>
 4) perftools-base/<PERFTOOLS_VERSION> 9) cray-libsci/<LIBSCI_VERSION>
 5) cce/<CCE_VERSION> 10) PrgEnv-cray/<PRGENV_VERSION>

user@hostname> cc mpi_hello.c -o mpi_hello.x

user@hostname> ldd mpi_hello.x
linux-vdso.so.1 (0x00007ffcac3eb000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f52cda4e000)
libmpi_cray.so.12 => /opt/cray/pe/lib64/libmpi_cray.so.12 (0x00007f52cb3da000)
libquadmath.so.0 => /usr/lib64/libquadmath.so.0 (0x00007f52cb394000)
libmodules.so.2 =>
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libmodules.so.2
(0x00007f52cb379000)
libfi.so.2 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libfi.so.2
(0x00007f52cadb3000)
libcraymath.so.2 =>
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcraymath.so.2
(0x00007f52caccd000)
libf.so.2 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libf.so.2
(0x00007f52cac39000)
libu.so.2 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libu.so.2
(0x00007f52cab2d000)
libcsup.so.1 => /opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcsup.so.1
(0x00007f52cab25000)
libc.so.6 => /lib64/libc.so.6 (0x00007f52ca92e000)
/lib64/ld-linux-x86-64.so.2 (0x00007f52cda72000)
libfabric.so.1 => /opt/cray/libfabric/<LIBFABRIC_VERSION>/lib64/libfabric.so.1
(0x00007f52ca839000)
libatomic.so.1 => /usr/lib64/libatomic.so.1 (0x00007f52ca82f000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f52ca80b000)
librt.so.1 => /lib64/librt.so.1 (0x00007f52ca801000)
libpmi.so.0 => /opt/cray/pe/lib64/libpmi.so.0 (0x00007f52ca7de000)
libpmi2.so.0 => /opt/cray/pe/lib64/libpmi2.so.0 (0x00007f52ca7bb000)
libm.so.6 => /lib64/libm.so.6 (0x00007f52ca66d000)
libgfortran.so.5 => /usr/lib64/libgfortran.so.5 (0x00007f52ca399000)
libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00007f52ca154000)
libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007f52ca130000)
librdmacm.so.1 => /usr/lib64/librdmacm.so.1 (0x00007f52ca10f000)
libibverbs.so.1 => /usr/lib64/libibverbs.so.1 (0x00007f52ca0ec000)
libpals.so.0 => /opt/cray/pals/<PALS_VERSION>/lib/libpals.so.0
(0x00007f52ca0e4000)
libnl-3.so.200 => /usr/lib64/libnl-3.so.200 (0x00007f52c9e00000)
libnl-route-3.so.200 => /usr/lib64/libnl-route-3.so.200 (0x00007f52c9a00000)

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

20

/usr/lib64 and /lib64. The libraries in /opt/cray are not included in the SLES base container image.

Build and Run the SingularityCE Image

Set the Location for Shared SIF Container Image Storage

Set the location for shared container image storage that will be used for SIF images in $SHARED_CONTAINERS_STORAGE.

1. Find the location of the shared storage directory for container image storage for rootless users.

The container image storage must be on shared network storage that is accessible from the application node and the compute nodes
where SingularityCE will be installed and configured. For example, you can use a directory on Lustre or NFS storage.

The example in this section uses a Lustre shared storage directory at /lus/snx11010/cocn/containers. Each rootless user uses a
subdirectory in the "/lus/snx11010/cocn/containers" directory.

2. Set an environment variable for the directory chosen for storage for SIF images for the rootless user and create the directory.

Build and Run the Shared Container Image

There are two main approaches for executing MPI applications installed in a SingularityCE container. The first approach is called the hybrid
model, which uses a combination of libraries provided on the host and in the container to provide the MPI implementation. The second
approach is called the bind model, which only uses the MPI implementation available on the host and does not include any MPI libraries in
the container.

For more information on using SingularityCE and MPI applications with the hybrid and bind models, refer to Sylabs's User Guide.

Select either the hybrid or bind model to build and run the SingularityCE image.

hybrid Model

1. Create the SingularityCE definition file.

Create the definition file that will later be used to create the SingularityCE image. Copy the list of shared libraries found in the previous
step into the container. In the following example, the shared libraries are copied to /usr/local/lib/ in the container, but they can be
copied to any directory that is available in the container. The directory containing the shared libraries must be included in
LD_LIBRARY_PATH.

user@hostname> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/singularity
user@hostname> mkdir -p $SHARED_CONTAINERS_STORAGE

user@hostname> vim mpi-hybrid_hello.def
user@hostname> cat mpi-hybrid_hello.def
Bootstrap: docker
From: registry.suse.com/bci/bci-base:latest
%files
/opt/cray/pe/lib64/libmpi_cray.so.12 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libmodules.so.2 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libfi.so.2 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcraymath.so.2 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libf.so.2 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libu.so.2 /usr/local/lib/
/opt/cray/pe/cce/<CCE_VERSION>/cce/x86_64/lib/libcsup.so.1 /usr/local/lib/
/opt/cray/libfabric/<LIBFABRIC_VERSION>/lib64/libfabric.so.1 /usr/local/lib/
/opt/cray/pe/lib64/libpmi.so.0 /usr/local/lib/
/opt/cray/pe/lib64/libpmi2.so.0 /usr/local/lib/
/opt/cray/pals/<PALS_VERSION>/lib/libpals.so.0 /usr/local/lib/
/path/to/app/mpi_hello.x /usr/local/bin/
%environment
export LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

21

https://docs.sylabs.io/guides/main/user-guide/mpi.html

2. Build the SingularityCE image.

3. Run the MPI application in the container on the application node.

4. Run the MPI application in the container on two compute nodes using Slurm.

For more information on Slurm, see the Slurm Usage section of this guide.

The --bind argument is used to specify the directories that are mounted into the container from the nodes.

Be sure to run the MPI application commands for the Slingshot version on your system.

Run the following command for HPE Slingshot 100GB NIC on two compute nodes.

Run the following command for HPE Slingshot 200GB NIC on two compute nodes.

5. Run the MPI application in the container on two compute nodes using PBS.

For more information on PBS, see the PBS Professional Usage section of this guide.

The --bind argument is used to specify the directories that are mounted into the container from the nodes.

Be sure to run the MPI application commands for the Slingshot version on your system.

Run the following commands for HPE Slingshot 100GB NIC on two compute nodes.

Run the following commands for HPE Slingshot 200GB NIC on two compute nodes.

export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/host/usr/lib64:/host/usr/lib64/libibverbs
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/lib64:/host/lib64

user@hostname> singularity build --fakeroot \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif mpi-hybrid_hello.def

user@hostname> singularity exec \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> srun -N2 singularity exec \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/spool/slurmd \
--bind /var/run/munge \
--bind /etc/libibverbs.d \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> srun -N2 singularity exec \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/spool/slurmd \
--bind /var/run/munge \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> qsub -I -l select=2,place=scatter
user@cn> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/singularity
user@cn> module load PrgEnv-cray; module load cray-pals; module load cray-pmi
user@cn> mpiexec -n2 singularity exec \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/run/palsd \
--bind /etc/libibverbs.d \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif /usr/local/bin/mpi_hello.x

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

22

bind Model

1. Create the SingularityCE definition file.

Create the definition file that will later be used to create the SingularityCE image. The shared libraries that are required by the MPI
application are not copied into the container and will need to be bind mounted from the host. The Cray shared libraries are available on
the host in /opt/cray/ and must be available in the container using $LD_LIBRARY_PATH.

2. Build the SingularityCE image.

3. Run the MPI application in the container on the application node.

The /opt/cray directory is mounted into the container from the node.

4. Run the MPI application in the container on two compute nodes using Slurm.

For more information on Slurm, see the Slurm Usage section of this guide.

The --bind argument is used to specify the directories that are mounted into the container from the nodes.

Be sure to run the MPI application commands for the Slingshot version on your system.

Run the following command for HPE Slingshot 100GB NIC on two compute nodes.

user@hostname> qsub -I -l select=2,place=scatter
user@cn> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/singularity
user@cn> module load PrgEnv-cray; module load cray-pals; module load cray-pmi
user@cn> mpiexec -n2 singularity exec \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/run/palsd \
$SHARED_CONTAINERS_STORAGE/mpi-hybrid_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> vim mpi-bind_hello.def
user@hostname> cat mpi-bind_hello.def
Bootstrap: docker
From: registry.suse.com/bci/bci-base:latest
%files
/path/to/app/mpi_hello.x /usr/local/bin/
%environment
export LD_LIBRARY_PATH=/opt/cray/pe/lib64:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/cray/pals/<PALS_VERSION>/lib
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/cray/libfabric/<LIBFABRIC_VERSION>/lib
64
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/host/usr/lib64:/host/usr/lib64/libibverbs
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/lib64:/host/lib64

user@hostname> singularity build --fakeroot \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif mpi-bind_hello.def

user@hostname> singularity exec \
--bind /opt/cray \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> srun -N2 singularity exec \
--bind /opt/cray \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

23

Run the following command for HPE Slingshot 200GB NIC on two compute nodes.

5. Run the MPI application in the container on two compute nodes using PBS.

For more information on PBS, see the PBS Professional Usage section of this guide.

The --bind argument is used to specify the directories that are mounted into the container from the nodes.

Be sure to run the MPI application commands for the Slingshot version on your system.

Run the following commands for HPE Slingshot 100GB NIC on two compute nodes.

Run the following commands for HPE Slingshot 200GB NIC on two compute nodes.

PBS Professional Usage

Subtopics

Parallel Application Launch Service
The Parallel Application Launch Service (PALS) serves as a launcher for third-party workload managers (WLMs) that do not provide their
own launchers, enabling parallel applications to be run as a unit on multiple compute nodes while coordinating their execution and
providing whole-application reporting. PALS enables the WLM to control node usage and allocation, and runs on the compute node
alongside the WLM daemon.

--bind /var/spool/slurmd \
--bind /var/run/munge \
--bind /etc/libibverbs.d \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> srun -N2 singularity exec \
--bind /opt/cray \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/spool/slurmd \
--bind /var/run/munge \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> qsub -I -l select=2,place=scatter
user@cn> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/singularity
user@cn> module load PrgEnv-cray; module load cray-pals; module load cray-pmi
user@cn> mpiexec -n2 singularity exec \
--bind /opt/cray \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/run/palsd \
--bind /etc/libibverbs.d \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif /usr/local/bin/mpi_hello.x

user@hostname> qsub -I -l select=2,place=scatter
user@cn> export
SHARED_CONTAINERS_STORAGE=/lus/snx11010/cocn/containers/$USER/singularity
user@cn> module load PrgEnv-cray; module load cray-pals; module load cray-pmi
user@cn> mpiexec -n2 singularity exec \
--bind /opt/cray \
--bind /usr/lib64:/host/usr/lib64 \
--bind /lib64:/host/lib64 \
--bind /var/run/palsd \
--bind /etc/libibverbs.d \
$SHARED_CONTAINERS_STORAGE/mpi-bind_hello.sif /usr/local/bin/mpi_hello.x

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

24

Control HPE Slingshot Network Resources Using PBS and PALS
You can control HPE Slingshot network resource allocation using the PALS mpiexec or aprun --network option. The network option
consists of a list of semicolon-separated values:
Run an Application with PBS in Batch Mode
This procedure creates a launch script and submits it as a PBS job using PALS.
Run an Application with PBS in Interactive Mode
This procedure interactively submits a job to PBS using the PALS mpiexec command.
ATOM Energy Reports
Application Test Orchestration and Management (ATOM) is an HPE Cray Supercomputing EX service that workload managers use to
manage jobs and tasks. ATOM runs job and application prolog and epilog tasks. Several predefined tasks are delivered with ATOM's
default configuration, but administrators can add site-specific tasks, if desired. This section explains how to to review some of the data
captured by these tasks.
Use the DRC2 Feature
Some systems run applications that need to use Remote Direct Memory Access (RDMA) communication between different HPC jobs and
users. Use the DRC2 feature with a workload manager to allow this communication on a system.

Parallel Application Launch Service

The Parallel Application Launch Service (PALS) serves as a launcher for third-party workload managers (WLMs) that do not provide their
own launchers, enabling parallel applications to be run as a unit on multiple compute nodes while coordinating their execution and providing
whole-application reporting. PALS enables the WLM to control node usage and allocation, and runs on the compute node alongside the WLM
daemon.

At this time, PALS supports only the PBS workload manager.

PALS supports the MPIR Process Acquisition Interface, which is used by tools such as debuggers and performance analyzers to locate
MPI processes that are part of an MPI job.

Applications are launched by PALS from a PBS job using the mpiexec or aprun commands. The mpiexec command is similar to the mpiexec
command used with other common distributions of the MPICH or Open MPI libraries.

PMIx Support

PALS supports a subset of the PMIx interface. To enable PMIx support, use the --pmi=pmix option or set the PALS_PMI=pmix environment
variable. For more information on PMIx, see the OpenPMIx documentation.

PALS supports the following PMIx features:

Feature PMIx Commands
Data access and sharing PMIx_Put, PMIx_Commit, and PMIx_Get

Process creation PMIx_Spawn

Publish/lookup operations PMIx_Publish, PMIx_Lookup, and PMIx_Unpublish

Synchronization PMIx_Fence

PALS provides the following non-reserved attributes for PMIx_Get:

SLINGSHOT_DEVICES - Comma-separated PMIX_STRING with CXI device names

SLINGSHOT_SVC_IDS - PMIX_DATA_ARRAY of CXI service IDs (PMIX_INT)

SLINGSHOT_VNIS - PMIX_DATA_ARRAY of VNIs the application can use (PMIX_UINT16)

PALS does not support the following PMIx features:

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

25

https://docs.openpmix.org

Feature PMIx Commands
Connecting and disconnecting processes PMIx_Connect and PMIx_Disconnect

Credentials PMIx_Get_credential and PMIx_Validate_credential

Event notification PMIx_Register_event_handler and PMIx_Notify_event

Fabric support PMIx_Fabric_register and PMIx_Fabric_update

Job management and reporting PMIx_Allocation_request and PMIx_Job_control

Process sets and groups PMIx_Group_invite and PMIx_Group_join

Query operations PMIx_Query_info and PMIx_Resolve_peers

Tools PMIx_tool_attach_to_server, PMIx_IOF_pull, and PMIx_IOF_push

Load cray-pals Module

Tip: Before running either mpiexec or aprun, modify the cray-pals module path to use the latest PALS modules. Then, load the cray-pals
module to access the PALS commands.

On systems with TCL modules:

On systems with Lua modules:

Launch an Application

To launch an application from a PBS job, use the mpiexec command with common options.

For examples, see Run an Application with PBS in Batch Mode and Run an Application with PBS in Interactive Mode . Further details are also
available in the mpiexec(1) and aprun(1) man pages when the cray-pals module is loaded.

mpiexec Command

Options and arguments for mpiexec are described in detail in the mpiexec(1) man page.

Tip: Note --cpu-bind and --mem-bind keyword details.

The --cpu-bind (CPU binding) option is formatted as [verbose,]<keyword>[:arguments], where the valid keywords are:

none - No CPU binding

numa, socket, core, thread - Bind ranks to the specified hardware

depth - Bind ranks to the number of threads in the argument

list - Bind ranks to colon-separated rangelists of CPUs

mask - Bind ranks to comma-separate bitmasks of CPUs

The --mem-bind (NUMA-mode memory binding) option is formatted as [verbose,]<keyword>[:arguments], where the valid keywords
are:

none - No memory binding

local - Restrict each rank to use only its own NUMA node memory

list - Bind ranks to colon-separated rangelists of NUMA nodes

user@hostname> export MODULEPATH=/opt/cray/pals/modulefiles:$MODULEPATH
user@hostname> module load cray-pals

user@hostname> export
MODULEPATH=/opt/cray/pals/lmod/modulefiles/core:$MODULEPATH
user@hostname> module load cray-pals

user@hostname> mpiexec -n <npes> --ppn <pes_per_node> -d <cpus_per_pe>
a.out

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

26

mask - Bind ranks to comma-separate bitmasks of NUMA nodes

Commonly Used PALS Commands

In addition to mpiexec and aprun, the following PALS commands are commonly used in the command-line interface.

Tip: The NODE options are not required if the commands are run within the same PBS job as the application.

Tip: The cray-pals module must be updated and loaded before running any of these commands. For more information, see Load cray-pals
Module. For complete details, see the palstat(1), palsig(1), palscmd(1), and palscp(1) man pages.

Command Action
palstat -n <NODE> List the applications currently running on a node.

palstat -n <NODE> <APID> Gather information about the application <APID>.

palsig -n <NODE> -s <SIGNAL> <APID> Send a signal to a running application. If <SIGNAL> is not specified,
the default is SIGTERM, to terminate the application.

In contrast, to stop a process, enter palsig -n <NODE> -s SIGSTOP
<APID>. To continue a stopped process, enter palsig -n <NODE> -s
SIGCONT <APID>.

palscmd -n <NODE> <APID> <CMD> <ARGS> Run a command alongside an application.

palscp -n <NODE> -f <FILE> <APID> Copy a file to an application's spool directory.

PALS Environment Variables

The following environment variables are set by PALS for each application rank in addition to other application environment variables.

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

27

Environment Variable Purpose
ALPS_APP_DEPTH The number of threads per process

ALPS_APP_ID Unique application identifier

ALPS_APP_PE This process's rank index

FI_CXI_COLL_FABRIC_MGR_URL URL for allocating Slingshot collectives

FI_CXI_COLL_JOB_ID The workload manager job ID

FI_CXI_COLL_JOB_STEP_ID The workload manager job-step ID

FI_CXI_COLL_MCAST_TOKEN Security token for using Slingshot collectives

FI_CXI_HWCOLL_ADDRS_PER_JOB Number of Slingshot multicast addresses per job

FI_CXI_HWCOLL_MIN_NODES Number of nodes per application to use collectives

PALS_APID Unique application identifier

PALS_APINFO Path to libpals application information file

PALS_DEPTH The number of threads per process

PALS_FD File descriptor for libpals communication

PALS_LOCAL_RANKID This process is the N'th rank on this host

PALS_LOCAL_SIZE The total number of ranks on just this host

PALS_NODEID This process's node index

PALS_RANKID This process's rank index

PALS_SPOOL_DIR Local application spool directory for transferred files

PMI_JOBID The workload manager job ID

PMI_LOCAL_RANK This process is the N'th rank on this host

PMI_LOCAL_SIZE The total number of ranks on just this host

PMI_RANK This process's rank (PMI rank reordering may overrule this)

PMI_SHARED_SECRET Key used to secure PMI communication

PMI_SIZE The total number of ranks

PMI_UNIVERSE_SIZE The maximum number of ranks for this application

SLINGSHOT_DEVICES The set of Slingshot devices configured for use

SLINGSHOT_SVC_IDS The Slingshot service ID for each corresponding device

SLINGSHOT_TCS The Slingshot traffic classes they can use

SLINGSHOT_VNIS The Slingshot security tokens they can use

ZE_AFFINITY_MASK Visibility of Intel GPUs

Important: Due to the way PALS is integrated with PBS, the job-specific temporary directory (TMPDIR) will only be created on the job's head
node. This can cause application failure if it tries to create temporary files or directories. To work around this problem, add export
TMPDIR=/tmp to the job script before calling aprun or mpiexec.

Control HPE Slingshot Network Resources Using PBS and PALS

You can control HPE Slingshot network resource allocation using the PALS mpiexec or aprun --network option. The network option consists
of a list of semicolon-separated values:

def_<rsrc>=<val> - Per-CPU reserved allocation for this resource

max_<rsrc>=<val> - Maximum per-node limit for this resource

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

28

The network resources are:

Resource Description Default Maximum
acs Addressing contexts 4 per-CPU 1022 per-node

cts Counters 1 per-CPU 2047 per-node

eqs Event queues 2 per-CPU 2047 per-node

les List entries 16 per-CPU 16384 per-node

ptes Portable table entries 6 per-CPU 2048 per-node

tles Trigger list entries 1 per-CPU 2048 per-node

tgqs Target command queues 1 per-CPU 512 per-node

txqs Transmit command queues 2 per-CPU 1024 per-node

For example, mpiexec --network def_txqs=4;max_eqs=1024 reserves 4 transmit command queues per CPU and limits application usage to
1024 event queues per node.

Run an Application with PBS in Batch Mode

This procedure creates a launch script and submits it as a PBS job using PALS.

Important: Because of the way PALS is integrated with PBS, the job-specific temporary directory (TMPDIR) is only created on the head node
of the job. This scenario can cause application failure if it tries to create temporary files or directories. To work around this problem, add
export TMPDIR=/tmp to the job script before calling aprun or mpiexec.

Prerequisites

PBS is installed and configured on the system.

The application is compiled.

For more information on creating MPI applications, visit the HPE Cray Programming Environment Online Documentation website .

The cray-pals module is updated and loaded.

For more information, see Load cray-pals Module.

Procedure

1. Change to the directory where the application is located.

2. Create a launch script launch.sh.

Important: If your login shell does not match the batch script shell (for example, your login shell is tcsh, but the batch script uses bash),
the module environment might not be initialized. To fix this issue, add -l to the first line of the batch script (for example, #!/bin/bash -l).

MPI: This example launch script is specific to the "Hello World" MPI application running on four nodes.

user@hostname> cd /lus/<USERNAME>

#!/bin/bash
#PBS -l walltime=00:00:30
echo start job $(date)
export MODULEPATH=/opt/cray/pals/modulefiles:$MODULEPATH
module load cray-pals
echo "mpiexec hostname"
mpiexec hostname
echo "mpiexec -n 4 /lus/<USERNAME>/hello_mpi"
mpiexec -n4 /lus/<USERNAME>/mpi_hello.x
echo end job $(date)

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

29

https://cpe.ext.hpe.com/docs/latest/index.html

3. Assign permissions to the launch.sh script to ensure it is executable.

4. Launch the batch script.

5. Check job output.

Run an Application with PBS in Interactive Mode

This procedure interactively submits a job to PBS using the PALS mpiexec command.

Prerequisites

PBS is installed and configured on the system.

The application is compiled.

For more information on creating MPI applications, visit the HPE Cray Programming Environment Online Documentation website .

The cray-pals module is updated and loaded.

For more information, see Load cray-pals Module.

Procedure

1. Initiate an interactive session.

2. Load the PrgEnv-cray, cray-pals, and cray-pmi modules.

3. Acquire information about mpiexec.

4. Change to the directory where the application is located.

5. Run the executable MPI program.

exit 0

user@hostname> chmod u+x launch.sh

user@hostname> qsub -l select=4,place=scatter launch.sh

user@hostname> cat launch.sh.o426757
Hello from rank 3
Hello from rank 2
Hello from rank 1
Hello from rank 0

user@hostname> qsub -I
qsub: waiting for job 4071.pbs-host to start
qsub: job 4071.pbs-host ready
user@hostname>

user@hostname> export MODULEPATH=/opt/cray/pals/modulefiles:$MODULEPATH
user@hostname> module load PrgEnv-cray cray-pals cray-pmi

user@hostname> type mpiexec
mpiexec is /opt/cray/pe/pals/<version>/bin/mpiexec

user@hostname> cd /lus/<USERNAME>

user@hostname> mpiexec -n4 ./mpi_hello.x
Hello from rank 1
Hello from rank 2
Hello from rank 3

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

30

https://cpe.ext.hpe.com/docs/latest/index.html

For an example using UCX instead of OFI:

ATOM Energy Reports

Application Test Orchestration and Management (ATOM) is an HPE Cray Supercomputing EX service that workload managers use to
manage jobs and tasks. ATOM runs job and application prolog and epilog tasks. Several predefined tasks are delivered with ATOM's default
configuration, but administrators can add site-specific tasks, if desired. This section explains how to to review some of the data captured by
these tasks.

When the ATOM energy plugin is configured, it captures per-node energy usage data whenever applications or workload manager jobs run
and writes it in JSON format to one or more files named $ATOMD_ACCT_DIR/users/$UID/jobs/JOBID/nodes/NID/energy.json.

The /opt/cray/atom/sbin/energy_post.py tool provides several options for generating reports based on the data captured by the ATOM
energy plugin; see energy_post.py --help for more information. For example:

By default, energy_post.py merges data from the individual node files into a single aggregate report file.

To compare the cpu_energy values shown in the raw data to the cpu_energy_used shown in the report, specify the --verbose option to
view both per-node and aggregate data.

Hello from rank 0

user@hostname> module swap craype-network-ofi craype-network-ucx

Inactive Modules:
 1) cray-mpich

user@hostname> module swap cray-mpich cray-mpich-ucx
user@hostname> mpiexec -n4 ./mpi_hello.x
Hello from rank 1
Hello from rank 2
Hello from rank 3
Hello from rank 0

nid00001:~ # /opt/cray/atom/sbin/energy_post.py
/lus/acct/users/0/jobs/<jobid>/nodes/*/
energy.json
{"energy_used": 212, "cpu_energy_used": 42, "memory_energy_used": 90,
"nodes": 2,
"nodes_throttled": 0, "nodes_cpu_throttled": 0,
"nodes_memory_throttled": 0,
"nodes_power_capped": 0, "min_power_cap": 0, "min_power_cap_count": 0,
"max_power_cap": 0, "max_power_cap_count": 0,
"nodes_with_changed_power_cap": 0}

nid00001:~ # /opt/cray/atom/sbin/energy_post.py --verbose \
/lus/acct/users/0/jobs/<jobid>/nodes/*/energy.json
{"xname": "x5000c1s0b1n0", "nid": "5002", "energy_used": 104,
"cpu_energy_used": 19,
"memory_energy_used": 46, "start_power_cap": 0, "stop_power_cap": 0,
"cpu_throttled": 0,
"memory_throttled": 0, "changed_power_cap": 0}
{"xname": "x5000c1s0b1n1", "nid": "5003", "energy_used": 108,
"cpu_energy_used": 23,
"memory_energy_used": 44, "start_power_cap": 0, "stop_power_cap": 0,
"cpu_throttled": 0,
"memory_throttled": 0, "changed_power_cap": 0}
{"energy_used": 212, "cpu_energy_used": 42, "memory_energy_used": 90,
"nodes": 2,
"nodes_throttled": 0, "nodes_cpu_throttled": 0,

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

31

To generate easier-to-read output, specify the --pretty option.

The ATOM energy plugin tracks the following data:

Counter Description
cpu_energy_used Total energy (joules) used in the CPU energy domain

energy_used Total energy (joules) used across all domains

max_power_cap Maximum nonzero power cap

max_power_cap_count Nodes with the maximum nonzero power cap

memory_energy_used Total energy (joules) used in the memory energy domain

min_power_cap Minimum nonzero power cap

min_power_cap_count Nodes with the minimum nonzero power cap

nodes Nodes in job

nodes_cpu_throttled Nodes experiencing CPU power/thermal throttling

nodes_memory_throttled Nodes experiencing memory power/thermal throttling

nodes_power_capped Nodes with nonzero power cap

nodes_throttled Nodes experiencing either CPU power/thermal throttling or memory
power/thermal throttling

nodes_with_changed_power_cap Nodes with power caps that changed during execution

Use the DRC2 Feature

Some systems run applications that need to use Remote Direct Memory Access (RDMA) communication between different HPC jobs and
users. Use the DRC2 feature with a workload manager to allow this communication on a system.

1. Include the drc2.h header file.

2. Call the DRC2 functions.

3. Link the application against libdrc2 by adding -ldrc2 to the compiler command.

For an example of DRC2 usage by applications or libraries:

"nodes_memory_throttled": 0,
"nodes_power_capped": 0, "min_power_cap": 0, "min_power_cap_count": 0,
"max_power_cap": 0, "max_power_cap_count": 0,
"nodes_with_changed_power_cap": 0}

nid00001:~ # /opt/cray/atom/sbin/energy_post.py --pretty \
/lus/acct/users/0/jobs/<jobid>/nodes/*/energy.json
{'cpu_energy_used': 42,
 'energy_used': 212,
 'max_power_cap': 0,
 'max_power_cap_count': 0,
 'memory_energy_used': 90,
 'min_power_cap': 0,
 'min_power_cap_count': 0,
 'nodes': 2,
 'nodes_cpu_throttled': 0,
 'nodes_memory_throttled': 0,
 'nodes_power_capped': 0,
 'nodes_throttled': 0,
 'nodes_with_changed_power_cap': 0}

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

32

Slurm Usage

Subtopics

Control HPE Slingshot Network Resources Using Slurm
You can control network resource allocation with Slurm on systems with certain HPE Slingshot networks. Use the scontrol command to
determine if this feature is enabled on your system.
Workload Manager Plugins
Various plugins allow the workload manager to interact with other parts of the HPE Cray Supercomputing EX system.
Run an Application with Slurm in Batch Mode
This procedure creates a launch script and submits it as a job using Slurm.
Run an Application with Slurm in Interactive Mode
This procedure launches an application using the Slurm srun command.
Use the DRC2 Feature
Some systems run applications that need to use Remote Direct Memory Access (RDMA) communication between different HPC jobs and
users. Use the DRC2 feature with a workload manager to allow this communication on a system.

Control HPE Slingshot Network Resources Using Slurm

#include <assert.h>
#include <drc2.h>
#include <stdlib.h>
int
main()
{
 drc2_errcode_t rc;
 drc2_set_t rset;
 char *token;
 void *auth_key;
 size_t keylen;

 rc = drc2_token_acquire("intercommunication", 0, 0, &token);
 assert(DRC2_SUCCESS == rc);

 rc = drc2_set_create(token, 0, 1, &rset);
 assert(DRC2_SUCCESS == rc);

 // Create a key for cxi1
 rc = drc2_create_ofi_key(rset, 1, &auth_key, &keylen);
 assert(DRC2_SUCCESS == rc);

 /*
 * Use the auth_key as the the key for the OFI domain_attr and
 * ep_attr authorization keys. You need separate copies for each, so
 * make a copy of the memory for the second one.
 */

 free(auth_key);

 rc = drc2_set_destroy(rset);
 assert(DRC2_SUCCESS == rc);

 return 0;
}

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

33

https://internal.support.hpe.com/hpesc/public/docDisplay?docId=dp00006419en_us&page=user/wlm-shared/Use_DRC2_for_RDMA_2.html

Control HPE Slingshot Network Resources Using Slurm

You can control network resource allocation with Slurm on systems with certain HPE Slingshot networks. Use the scontrol command to
determine if this feature is enabled on your system.

If SwitchType = switch/hpe_slingshot, this feature is enabled. For more information on the switch/hpe_slingshot plugin, see WLM Plugins.

Use the srun, sbatch, or salloc command with the --network option to configure network resource allocation for your jobs. The --network
option consists of a comma-separated list of network resource modifiers and values in one of the following formats:

modifier

modifier=<val>

modifier_<rsrc>=<val>

For example, the following command allocates a job VNI, reserves 4 transmit command queues per CPU, reserves 128 target command
queues per node, and limits application usage to 1024 event queues per node.

The network resource modifiers are:

Modifier Description
adjust_limits slurmd sets an upper bound on network resource reservations by

taking the per-NIC maximum resource quantities and subtracting the
reserved or used values (whichever are higher) for all system network
services. This is the default.

no_adjust_limits slurmd calculates network resource reservations based only upon the
per-resource configuration default and the number of tasks in the
application. It does not set an upper bound on reservation requests
based on resource usage of already-existing system network services.
Consequently, setting this means more application launches might fail
based on network resource exhaustion, but if the application
absolutely needs certain amounts of resources to function, this option
ensures it.

def_<rsrc>=<val> Per-CPU reserved allocation for the selected resource.

res_<rsrc>=<val> Per-node reserved allocation for the selected resource. This overrides
the per-CPU allocation.

max_<rsrc>=<val> Maximum per-node limit for the selected resource.

depth=<depth> Multiplier for per-CPU resource allocation. Default is the number of
reserved CPUs on the node.

job_vni Allocates a job VNI for this job.

no_vni Does not allocate any VNIs for this job, even if it is a multi-node job.

single_node_vni Allocates a job VNI for this job, even if it is a single-node job.

tcs=<class1>[:<class2>] Configures traffic classes for applications. The available traffic
classes are DEDICATED_ACCESS, LOW_LATENCY, BULK_DATA, and
BEST_EFFORT. The traffic classes can also be specified as
TC_DEDICATED_ACCESS, TC_LOW_LATENCY, TC_BULK_DATA, and
TC_BEST_EFFORT. Access to traffic classes can be controlled by site
policy through a Slurm job submit plugin. Therefore, the job's traffic
class request might be modified or rejected.

The network resources are:

user@hostname> scontrol show config |grep SwitchType
SwitchType = switch/hpe_slingshot

user@hostname> srun --network
job_vni,def_txqs=4,res_tgqs=128,max_eqs=1024

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

34

Resource Description Default Maximum
acs Addressing contexts 4 per-CPU 1022 per-node

cts Counters 1 per-CPU 2047 per-node

eqs Event queues 2 per-CPU 2047 per-node

les List entries 16 per-CPU 16384 per-node

ptes Portable table entries 6 per-CPU 2048 per-node

tles Trigger list entries 1 per-CPU 2048 per-node

tgqs Target command queues 1 per-CPU 512 per-node

txqs Transmit command queues 2 per-CPU 1024 per-node

Workload Manager Plugins

Various plugins allow the workload manager to interact with other parts of the HPE Cray Supercomputing EX system.

HPE Slingshot Plugin

The Slurm switch/hpe_slingshot plugin configures HPE Slingshot NICs to control access to Virtual Network Identifiers (VNIs), traffic classes
(TCs), and NIC resources. It also provides information about the NIC configuration to the end-user application through environment
variables. When each job step is complete, it removes the NIC configuration on compute nodes and returns allocated VNIs to the available
pool for reuse.

The environment variables set by the switch/hpe_slingshot plugin are:

Environment Variable Description
SLINGSHOT_DEVICES Comma-separated list of NIC devices

SLINGSHOT_SVC_IDS Comma-separated list of CXI service IDs, one per device

SLINGSHOT_TCS Bitmask of allowed traffic classes

SLINGSHOT_VNIS Comma-separated list of allowed VNIs

If the hardware-accelerated collectives feature is enabled, these additional environment variables are set:

Environment Variable Description
FI_CXI_COLL_FABRIC_MGR_URL URL to contact the Slingshot Fabric Manager

FI_CXI_COLL_JOB_ID Job ID

FI_CXI_COLL_JOB_STEP_ID Job step ID

FI_CXI_COLL_MCAST_TOKEN Authentication token for contacting the Slingshot Fabric Manager

FI_CXI_HWCOLL_ADDRS_PER_JOB Number of multicast addresses assigned to the job

FI_CXI_HWCOLL_MIN_NODES Minimum number of nodes required to use hardware-accelerated
collectives

Cray Shasta Plugin

The Slurm mpi/cray_shasta plugin provides information to Cray PMI used to set up communication between application ranks. It performs
the following tasks:

1. Creates a job step-specific directory on each compute node under the slurmd spool directory.

2. Creates an apinfo file in the job step directory containing job step layout and networking information.

3. Sets Cray PMI-specific environment variables for each task.

4. Removes the apinfo file and job step-specific directory when the job step ends.

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

35

The environment variables set by the mpi/cray_shasta plugin are:

Environment Variable Description
PALS_APID Application ID, set to "<jobid>.<stepid>"

PALS_APINFO Path to the apinfo file

PALS_LOCAL_RANKID Node local rank ID, same as Slurm's SLURM_LOCALID

PALS_NODEID Relative node ID of the current node, same as Slurm's
SLURM_NODEID

PALS_RANKID Global rank ID, same as Slurm's SLURM_PROCID

PALS_SPOOL_DIR Path to the job step-specific directory containing the apinfo file

PMI_CONTROL_PORT Port used by Cray PMI for remote communication within the port
range set by MpiParams

PMI_JOBID Job ID, same as Slurm's SLURM_JOB_ID

PMI_LOCAL_RANK Node local rank ID, same as Slurm's SLURM_LOCALID

PMI_LOCAL_SIZE Number of tasks on this node

PMI_RANK Global rank ID, same as Slurm's SLURM_PROCID

PMI_SHARED_SECRET Random 64-bit integer value, used to authenticate Cray PMI
connections

PMI_SIZE Number of tasks in the job step, same as Slurm's SLURM_NTASKS

PMI_UNIVERSE_SIZE Maximum number of tasks in this job step (is set to the same number
as PMI_SIZE)

Run an Application with Slurm in Batch Mode

This procedure creates a launch script and submits it as a job using Slurm.

Prerequisites

Slurm is installed and configured on the system.

The application is compiled.

For more information on creating MPI applications, visit the HPE Cray Programming Environment Online Documentation website .

Procedure

1. Log in to the application node with the connection string.

2. Load CPE modules.

MPI: MPI modules are loaded by default.

OpenSHMEM: If OpenSHMEM is available, load the Cray OpenSHMEM modules.

Cray DSMML: If DSMML is available, the Cray DSMML modules are loaded by default.

3. Determine the default MPI type for Slurm.

When using Cray MPICH, Slurm must use the cray_shasta MPI type.

ssh user@hostname

user@hostname> module load cray-openshmemx

user@hostname> scontrol show config | grep MpiDefault

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

36

https://cpe.ext.hpe.com/docs/latest/index.html

If the default Slurm MPI type is not cray_shasta, either add the --mpi=cray_shasta option to each srun command or set the
SLURM_MPI_TYPE environment variable to cray_shasta.

4. Change to the directory where the application is located.

5. Create a launch script.

Important: If your login shell doesn't match the batch script shell (for example, your login shell is tcsh but the batch script uses bash), the
module environment may not be initialized. To fix this, add -l to the first line of the batch script (for example, #!/bin/bash -l).

To launch the application with sbatch, add srun to the launch script.

MPI: The following example is specific to the "Hello World" MPI application running on four nodes.

OpenSHMEM (CSM systems only):

DSMML (CSM systems only):

The DSMML batch script example is specific to the sample DSMML application code. It runs on a single node with one processing
element.

For more information, visit the HPE Cray Programming Environment Online Documentation website .

6. Assign permissions to the launch.sh script to ensure it is executable.

7. Launch the batch script.

8. Check job output.

MPI:

MpiDefault = cray_shasta

user@hostname> export SLURM_MPI_TYPE=cray_shasta

user@hostname> cd /lus/<USERNAME>

#!/bin/bash
#SBATCH -N4
#SBATCH --ntasks-per-node=1
ulimit -s unlimited # in case not set by default
srun -N4 --ntasks-per-node=1 ./mpi_hello.x
exit 0

#!/bin/bash
#SBATCH --time=5
#SBATCH --nodes=2
#SBATCH --tasks-per-node=4
module load cray-openshmemx
srun -n8 ./shmem_hello.x
exit 0

#!/bin/bash
#SBATCH --time=5
#SBATCH --nodes=1
#SBATCH --tasks-per-node=1
srun -n1 ./dsmml_example.x
exit 0

user@hostname> chmod u+x launch.sh

user@hostname> sbatch launch.sh
Submitted batch job 1065736

user@hostname> cat slurm-1065736.out
Hello from rank 1

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

37

https://cpe.ext.hpe.com/docs/latest/index.html

Troubleshoot: Add ldd to the job script to check that the correct modules are loaded.

Run an Application with Slurm in Interactive Mode

This procedure launches an application using the Slurm srun command.

Prerequisites

Slurm is installed and configured on the system.

The application is compiled.

For more information on creating MPI applications, visit the HPE Cray Programming Environment Online Documentation website .

Procedure

1. Log in to the application node with the connection string.

2. Load CPE modules.

MPI: MPI modules are loaded by default.

OpenSHMEM: If OpenSHMEM is available, load the Cray OpenSHMEM modules.

3. Determine the default MPI type for Slurm.

When using Cray MPICH, Slurm must use the cray_shasta MPI type.

If the default Slurm MPI type is not cray_shasta, either add the --mpi=cray_shasta option to each srun command or set the
SLURM_MPI_TYPE environment variable to cray_shasta.

4. Change to the directory where the application is located.

5. Execute the application with srun.

MPI:

For an example using OFI:

Hello from rank 3
Hello from rank 0
Hello from rank 2

user@hostname> ldd ./mpi_hello.x

ssh user@hostname

user@hostname> module load cray-openshmemx

user@hostname> scontrol show config | grep MpiDefault
MpiDefault = cray_shasta

user@hostname> export SLURM_MPI_TYPE=cray_shasta

user@hostname> cd /lus/<USERNAME>

user@username> srun -N<ranks> --ntasks-per-node=<number_tasks_per_node>
./<app_exe>

user@hostname> srun -N4 --ntasks-per-node=1 ./mpi_hello.x
Hello from rank 1
Hello from rank 2
Hello from rank 3

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

38

https://cpe.ext.hpe.com/docs/latest/index.html

For an example using UCX:

OpenSHMEM (CSM systems only):

For example:

DVS Usage

Subtopics

DVS Environment Variables
By default, user environment variables allow client override of mount options specified during configuration. Reference the HPE Cray
Supercomputing User Services Software Administration Guide for HPE Performance Cluster Manager Software or the HPE Cray
Supercomputing User Services Software Administration Guide: CSM on HPE Cray Supercomputing EX Systems for more information on
the operation of DVS and available mount options.

DVS Environment Variables

By default, user environment variables allow client override of mount options specified during configuration. Reference the HPE Cray
Supercomputing User Services Software Administration Guide for HPE Performance Cluster Manager Software or the HPE Cray
Supercomputing User Services Software Administration Guide: CSM on HPE Cray Supercomputing EX Systems for more information on the
operation of DVS and available mount options.

By default, user environment variables allow client override of options specified during configuration and are evaluated whenever a file is
opened by DVS. However, if the nouserenv option is included in the options setting of the client_mount configuration setting, then user
environment variables are disabled for that client mount.

The following environment variables are for use in the default case:

Cray DVS User Environment Variables

Hello from rank 0

user@hostname> module swap craype-network-ofi craype-network-ucx
user@hostname> module swap cray-mpich cray-mpich-ucx
user@hostname> srun -N4 --ntasks-per-node=1 ./mpi_hello.x
Hello from rank 1
Hello from rank 2
Hello from rank 3
Hello from rank 0

user@hostname> srun -n<ranks> ./shmem_hello.x

user@hostname> srun -n8 ./shmem_hello.x

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

39

Variable Name Options Purpose
DVS_ATOMIC on|off Overrides the atomic or noatomic mount

options.

DVS_BLOCKSIZE n A nonzero number, n overrides the blksize
mount option. Note: Unlike most other mount
option and environment variable pairs,
DVS_BLOCKSIZE and blksize have subtly
different spellings.

DVS_CACHE on\|off Overrides the cache or nocache mount
options. Exercise caution if using this variable.

DVS_CACHE_READ_SZ n A positive integer, n overrides the
cache_read_sz mount option.

DVS_CLOSESYNC on|off Overrides the closesync or noclosesync mount
options. Note: Periodic sync functions
similarly to the DVS closesync mount option,
but it is more efficient and is enabled by
default. Hewlett Packard Enterprise
recommends not using closesync or this
associated environment variable.

DVS_DATASYNC on|off Overrides the datasync or nodatasync mount
options. Note: Setting DVS_DATASYNC to on
can slow down an application considerably.
The periodic sync feature, enabled by default,
is a better way to synchronize data. See the
section "Periodic Sync Promotes Data and
Application Resiliency" in HPE Cray
Supercomputing User Services Software
Administration Guide for your platform for
more information.

DVS_DEFEROPENS on|off Overrides the deferopens or nodeferopens
mount options.

DVS_KILLPROCESS on|off Overrides the killprocess or nokillprocess
mount options.

DVS_MAXNODES n A nonzero number, n overrides the maxnodes
mount option. The specified value of
maxnodes must be greater than zero and less
than or equal to the number of server nodes
specified on the mount, otherwise the variable
has no effect.

Low Noise Mode

Some application workloads show improved performance when compute node operating system tasks (sources of "OS noise") are migrated
to one or more system CPUs that are excluded from application use. Low Noise Mode configures Linux features to achieve this
configuration. For more information about Low Noise Mode, see the HPE Cray Supercomputing User Services Software Administration Guide
for your platform.

Checking Low Noise Mode Status

Use the executable /usr/sbin/lnmctl to check the status of Low Noise Mode on a node. For example, invoke the executable as:

/usr/sbin/lnmctl --status

If Low Noise Mode is configured, the command produces output similar to:

Mode: full
CPU: [0, 63]

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

40

This indicates that Low Noise Mode is active in its "full" state with CPUs 0 and 63 as the "system" CPUs.

If Low Noise Mode is not configured, the command produces output similar to File /var/run/lnm.status not found.

Download HPE Cray Supercomputing EX Software

To download HPE Cray Supercomputing EX software, refer to the HPE Support Center or download it directly from My HPE Software
Center. The HPE Support Center contains a wealth of documentation, training videos, knowledge articles, and alerts for HPE Cray
Supercomputing EX systems. It provides the most detailed information about a release as well as direct links to product firmware, software,
and patches available through My HPE Software Center.

Download Software through the HPE Support Center

HPE recommends downloading software through the HPE Support Center because of the many other resources available on the website.

1. Visit the HPE Cray Supercomputing EX product page on the HPE Support Center.

2. Search for specific product info, such as the full software name or recipe name and version.

For example, search for "Slingshot 2.1" or "Cray System Software with CSM 24.3.0."

3. Find the desired software in the search results and select it to review details.

4. Select Obtain Software and select Sign in Now when prompted.

If a customer's Entitlement Order Number (EON) is tied to specific hardware rather than software, the software is available without
providing account credentials. Access the software instead by selecting Download Software and skip the next step in this procedure.

5. Enter account credentials when prompted and accept the HPE License Terms.

To download software, customers must ensure their Entitlement Order Number (EON) is active under My Contracts & Warranties on My
HPE Software Center. If customers have trouble with the EON or are not entitled to a product, they must contact their HPE contract
administrator or sales representative for assistance.

6. Choose the needed software and documentation files to download and select curl Copy to access the files.

Just like the software files, the documentation files change with each release. In addition to the official documentation, valuable
information for a release is often available in files that include the phrase README in their name. Be sure to select and review these files
in detail.

HPE recommends the curl Copy option, which downloads a single text file with curl commands to use on the desired system. You must
run the curl commands within 24 hours of downloading them or download new commands if more than 24 hours have passed.

To validate the security of the downloads, you can later compare the files on the desired system against the checksums provided by HPE
underneath each selected download.

7. Save the text file to a central location.

8. On the system where the software will be downloaded, run a shell script to execute the text file that includes the curl commands.

For example:

The -x option in this example tracks the download progress of each curl command in the text file.

Download Software Directly from My HPE Software Center

Users already familiar with a release can save time by downloading software directly from My HPE Software Center.

1. Visit My HPE Software Center and select Sign in.

2. Enter account credentials when prompted and select Software in the left navigation bar.

3. Search for specific product info, such as the full software name or recipe name and version.

ncn-m001# bash -x <TEXT_FILE_PATH>

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

41

https://support.hpe.com/connect/s/?language=en_US
https://myenterpriselicense.hpe.com/cwp-ui/auth/login
http://www.hpe.com/support/HPE-Cray-EX-Supercomputers-software
https://support.hpe.com/connect/s/?language=en_US
https://myenterpriselicense.hpe.com/cwp-ui/auth/login
https://myenterpriselicense.hpe.com/cwp-ui/auth/login

For example, search for "Slingshot 2.1" or "Cray System Software with CSM 24.3.0."

4. Find the desired software in the search results and review details by selecting Product Details under the Action column.

5. Select Go To Downloads Page and accept the HPE License Terms.

To download software, customers must ensure their Entitlement Order Number (EON) is active under My Contracts & Warranties . If
customers have trouble with the EON or are not entitled to a product, they must contact their HPE contract administrator or sales
representative for assistance.

6. Choose the needed software and documentation files to download and select curl Copy to access the files.

Just like the software files, the documentation files change with each release. In addition to the official documentation, valuable
information for a release is often available in files that include the phrase README in their name. Be sure to select and review these files
in detail.

HPE recommends the curl Copy option, which downloads a single text file with curl commands to use on the desired system. You must
run the curl commands within 24 hours of downloading them or download new commands if more than 24 hours have passed.

To validate the security of the downloads, you can later compare the files on the desired system against the checksums provided by HPE
underneath each selected download.

7. Save the text file to a central location.

8. On the system where the software will be downloaded, run a shell script to execute the text file that includes the curl commands.

For example:

The -x option in this example tracks the download progress of each curl command in the text file.

Copy and Paste Commands from this Guide

If experiencing issues copying and pasting commands from the PDF version of this guide, the following steps are recommended to ensure
that the commands are copied and pasted correctly:

1. Copy a command from the PDF.

2. Paste it into a text-only tool, like a text editor.

3. Copy the command from the text-only tool and paste it into the console.

If entering commands manually, double-check them for correctness. Some commands may not render correctly in a PDF depending on the
PDF viewer in use.

Alternatively, copy and paste commands from the HTML or Markdown versions of this guide.

Documentation Conventions

Several conventions have been used in the preparation of this documentation.

ncn-m001# bash -x <TEXT_FILE_PATH>

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

42

Markdown Format

File Formats

Typographic Conventions

Annotations for how we identify sections of the documentation that do not apply to all systems

Command Prompt Conventions which describe the context for user, host, directory, chroot environment, or container environment

Subtopics

Markdown Format
This documentation is in Markdown format. Although much of it can be viewed with any text editor, a richer experience will come from
using a tool which can render the Markdown to show different font sizes, the use of bold and italics formatting, inclusion of diagrams
and screen shots as image files, and to follow navigational links within a topic file and to other files.
File Formats
Some of the installation instructions require updating files in JSON, YAML, or TOML format. These files should be updated with care
since some file formats do not accept tab characters for indentation of lines. Only space characters are supported. Refer to online
documentation to learn more about the syntax of JSON, YAML, and TOML files.
Typographic Conventions
This style indicates program code, reserved words, library functions, command-line prompts, screen output, file/path names, and other
software constructs.
Annotations
This repository may change annotations, for now, under the MarkDown governance these are the available annotations.
Command Prompt Conventions

Markdown Format

This documentation is in Markdown format. Although much of it can be viewed with any text editor, a richer experience will come from using
a tool which can render the Markdown to show different font sizes, the use of bold and italics formatting, inclusion of diagrams and screen
shots as image files, and to follow navigational links within a topic file and to other files.

There are many tools which can render the Markdown format to get these advantages. Any Internet search for Markdown tools will provide
a long list of these tools. Some of the tools are better than others at displaying the images and allowing you to follow the navigational links.

HPE recommends disabling line wrapping when using the raw Markdown version of this publication. This helps with viewing the large tables
in Markdown. Each publication is available in PDF, HTML, and Markdown format.

File Formats

Some of the installation instructions require updating files in JSON, YAML, or TOML format. These files should be updated with care since
some file formats do not accept tab characters for indentation of lines. Only space characters are supported. Refer to online documentation
to learn more about the syntax of JSON, YAML, and TOML files.

Typographic Conventions

This style indicates program code, reserved words, library functions, command-line prompts, screen output, file/path names, and other
software constructs.

\ (backslash) At the end of a command line, indicates the Linux shell line continuation character (lines joined by a backslash are parsed as a
single line).

Annotations

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

43

This repository may change annotations, for now, under the MarkDown governance these are the available annotations.

You must use these to denote the right steps to the right audience.

These are context clues for steps, if they contain these, and you are not in that context you ought to skip them.

EXTERNAL USE

This tag should be used to highlight anything that an HPE Cray internal user should ignore or skip.

INTERNAL USE

This tag is used before any block of instruction or text that is only usable or recommended for internal HPE Cray systems.

External (GitHub or customer) should disregard these annotated blocks - they maybe contain useful information as an example but are not
intended for their use.

Command Prompt Conventions

Host name and account in command prompts

The host name in a command prompt indicates where the command must be run. The account that must run the command is also indicated
in the prompt.

The root or super-user account always has the # character at the end of the prompt

Any non-root account is indicated with account@hostname>. A non-privileged account is referred to as user.

Node abbreviations

The following list contains abbreviations for nodes used throughout this document.

CN - compute Node

NCN - Non Compute Node

AN - Application Node (special type of NCN)

UAN - User Access Node (special type of AN)

PIT - Pre-Install Toolkit (initial node used as the inception node during software installation booted from the LiveCD)

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

44

Prompt Description
ncn# Run the command as root on any NCN, except an NCN which is

functioning as an Application Node (AN), such as a UAN.

ncn-m# Run the command as root on any NCN-M (NCN which is a Kubernetes
master node).

ncn-m002# Run the command as root on the specific NCN-M (NCN which is a
Kubernetes master node) which has this hostname (ncn-m002).

ncn-w# Run the command as root on any NCN-W (NCN which is a Kubernetes
worker node).

ncn-w001# Run the command as root on the specific NCN-W (NCN which is a
Kubernetes master node) which has this hostname (ncn-w001).

ncn-s# Run the command as root on any NCN-S (NCN which is a Utility
Storage node).

ncn-s003# Run the command as root on the specific NCN-S (NCN which is a
Utility Storage node) which has this hostname (ncn-s003).

pit# Run the command as root on the PIT node.

linux# Run the command as root on a Linux host.

uan# Run the command as root on any UAN.

uan01# Run the command as root on hostname uan01.

user@uan> Run the command as any non-root user on any UAN.

cn# Run the command as root on any CN. Note that a CN will have a
hostname of the form nid124356, that is "nid" and a six digit, zero
padded number.

hostname# Run the command as root on the specified hostname.

user@hostname> Run the command as any non-root user on the specified hostname.

Command prompt inside chroot

If the chroot command is used, the prompt changes to indicate that it is inside a chroot environment on the system.

Command prompt inside Kubernetes pod

If executing a shell inside a container of a Kubernetes pod where the pod name is $podName, the prompt changes to indicate that it is inside
the pod. Not all shells are available within every pod, this is an example using a commonly available shell.

Command prompt inside image customization session

If using ssh during an image customization session, the prompt changes to indicate that it is inside the image customization environment
(pod). This example uses $PORT and $HOST as environment variables with specific settings. When using chroot in this context the prompt
will be different than the above chroot example.

Directory path in command prompt

Example prompts do not include the directory path, because long paths can reduce the clarity of examples. Most of the time, the command
can be executed from any directory. When it matters which directory the command is invoked within, the cd command is used to change into
the directory, and the directory is referenced with a period (.) to indicate the current directory.

hostname# chroot /path/to/chroot
chroot-hostname#

ncn# kubectl exec -it $podName /bin/sh
pod#

hostname# ssh -p $PORT root@$HOST
root@POD# chroot /mnt/image/image-root
:/#

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

45

Examples of prompts as they appear on the system:

Examples of prompts as they appear in this publication:

Command prompts for network switch configuration

The prompts when doing network switch configuration can vary widely depending on which vendor switch is being configured and the
context of the item being configured on that switch. There may be two levels of user privilege which have different commands available and
a special command to enter configuration mode.

Example of prompts as they appear in this publication:

Enter "setup" mode for the switch make and model, for example:

Refer to the switch vendor OEM documentation for more information about configuring a specific switch.

hostname# cd /etc
hostname:/etc# cd /var/tmp
hostname:/var/tmp# ls ./file
hostname:/var/tmp# su - user
user@hostname:~> cd /usr/bin
user hostname:/usr/bin> ./command

hostname# cd /etc
hostname# cd /var/tmp
hostname# ls ./file
hostname# su - user
user@hostname> cd /usr/bin
user@hostname> ./command

remote# ssh admin@sw-leaf-001
sw-leaf-001# enable
sw-leaf-001# configure terminal
sw-leaf-001(conf)#

HPE Cray Supercomputing User Services Software User Guide: CSM and HPCM on HPE Cray Supercomputing EX Systems
(1.3.1) (S-8065)

46

	Copyright and Version
	Source Availability
	About the USS User Guide
	Release Information
	Example Software Commands

	Containers on Compute Nodes (COCN) Usage
	Introduction to COCN
	Prerequisites for Creating Containers
	Container Software

	Build and Run an MPI Application Using Podman
	Prerequisites for Building and Running an MPI Application Using Podman
	Prepare the MPI Application for Podman
	Create and Build an MPI Application on the Application Node
	Find and Copy the Shared Libraries Needed by the MPI Application

	Build and Run the Podman Image
	Build the Container Image on Local Container Image Storage
	Migrate the Container Image from Local to Shared Container Image Storage
	Run the MPI Application

	Build and Run an MPI Application Using Apptainer
	Prerequisites for Building and Running an MPI Application Using Apptainer
	Prepare the MPI Application for Apptainer
	Create and Build an MPI Application on the Application Node
	Find the Shared Libraries Needed by the MPI Application

	Build and Run the Apptainer Image
	Set the Location for Shared SIF Container Image Storage
	Build and Run the Shared Container Image
	hybrid Model
	bind Model

	Build and Run an MPI Application Using SingularityCE
	Prerequisites for Building and Running an MPI Application Using SingularityCE
	Prepare the MPI Application for SingularityCE
	Create and Build an MPI Application on the Application Node
	Find the Shared Libraries Needed by the MPI Application

	Build and Run the SingularityCE Image
	Set the Location for Shared SIF Container Image Storage
	Build and Run the Shared Container Image
	hybrid Model
	bind Model

	PBS Professional Usage
	Parallel Application Launch Service
	PMIx Support
	Load cray-pals Module
	Launch an Application
	mpiexec Command
	Commonly Used PALS Commands
	PALS Environment Variables

	Control HPE Slingshot Network Resources Using PBS and PALS
	Run an Application with PBS in Batch Mode
	Prerequisites
	Procedure

	Run an Application with PBS in Interactive Mode
	Prerequisites
	Procedure

	ATOM Energy Reports
	Use the DRC2 Feature
	Slurm Usage
	Control HPE Slingshot Network Resources Using Slurm
	Workload Manager Plugins
	HPE Slingshot Plugin
	Cray Shasta Plugin

	Run an Application with Slurm in Batch Mode
	Prerequisites
	Procedure

	Run an Application with Slurm in Interactive Mode
	Prerequisites
	Procedure

	DVS Usage
	DVS Environment Variables
	Cray DVS User Environment Variables

	Low Noise Mode
	Checking Low Noise Mode Status

	Download HPE Cray Supercomputing EX Software
	Download Software through the HPE Support Center
	Download Software Directly from My HPE Software Center

	Copy and Paste Commands from this Guide
	Documentation Conventions
	Markdown Format
	File Formats
	Typographic Conventions
	Annotations
	Command Prompt Conventions
	Host name and account in command prompts
	Node abbreviations
	Command prompt inside chroot
	Command prompt inside Kubernetes pod
	Command prompt inside image customization session
	Directory path in command prompt
	Command prompts for network switch configuration

