
Advanced Apptainer Guide

Last updated 22 April, 2024 • 1 min read

This is a follow-up guide on Apptainer on how to customize containers for
optimal productivity. For an introduction to Apptainer, please first read this
article.

 Instructions
In this tutorial, you will learn

1. About apptainer definition files, which are informally termed recipes;

2. How to use pre-built docker images;

3. Use recipes to customize the pre-built docker images.

 The basic of Apptainer recipes
The Apptainer recipe (or definition file) is a simple text file with a .def
extension. These files are divided into two parts, the Header and the
Sections.

1. The Header describes the operating system (OS) within the container.

2. The rest of the definition comprises Sections. Each section is defined by a
% character followed by the name of the particular section. All sections are
optional, and a .def file may contain more than one instance of a given
section.

The Header
The header should be written at the top of your recipe, and it will need at
least two “arguments,” the Bootstrap agent and the From . Loosely
speaking, the former tells Apptainer where to get the OS we desire to work
with, while the latter will inform the specific OS and, optionally, its exact
version. So, for example,







Bootstrap: docker
From: debian1

2

›

https://kb.uconn.edu/space/SH/26231799924

will use the latest Debian OS as the basis for our container. The OS will be
obtained from an official docker pre-built image. Alternatively, we can set up
version 7 of Debian by replacing From: debian with From: debian:7 .

The Sections
The Sections most commonly used are listed below.

%files
The %files section allows you to copy files into the container safely. Its
general form lists the files (or directories) in the host and the container as
follows:

%post
In this section, you can download and install software from the internet as if
in a command line of the chosen OS. For example, assuming we are
running a Debian container, we can

install libomp-dev , wget , and git ;

define a variable with the date and time when the container was built;

clone a GitHub repository

as follows

%environment
The %environment section allows you to define environment variables
available at runtime. If you define a variable in %post it will be available
when building the container but not when executing it. Conversely, variables
included in the %environment section are unavailable at build time. For
instance, to make the previously created NOW variable available at runtime
as well, we should define the %environment section as follows:





%files
 /path/file1 /opt/1

2

›



 %post
 apt-get update && apt-get install -y \
 libomp-dev \
 git
 export NOW=`date`
 git clone https://github.com/tatsu-lab/stanford_alpaca.git

1
2
3
4
5
6

›



%runscript
The contents of the %runscript section are executed when the container
image is run using, for example, apptainer run . The following %runscript
section displays the time when the container was created.

%labels
This section creates metadata for your container, and its general format is a
name-value pair. Below, we are defining the author and the version of our
container.

%help
The %help section helps describe the purpose of the container and how a
user can interact with it. Its content will be incorporated into the container
metadata with the content from %labels . The %help content can be
retrieved using the run-help command.

Below we provide a simple help section:

 You can find a complete list of available Bootstrap agents and more
details about the Sections in Apptainer’s official documentation.

In the following section of this tutorial, we put into practice the knowledge we
just acquired about the sections of Apptainer recipes.

 Using a pre-built image from Docker to build a

%environment
 NOW=$NOW1

2

›



%runscript
 echo "Container was created $NOW"1

2

›



%labels
 Author hpc@uconn
 Version v0.1

1
2
3

›



 %help
 This container purpose is to describe common sections from definition files.1

2

›

https://apptainer.org/docs/user/main/definition_files.html#preferred-bootstrap-agents
https://apptainer.org/docs/user/main/definition_files.html#sections

custom geopandas container
Let us call geopandas.def the definition file containing the chunk of code
below. The provided commands will install the geopandas python library on
the top of a GDAL pre-built image. This is convenient because GDAL is a
“tricky to install” dependency for the geopandas library. Our %runscript will
show the time at which the container was built and, in addition, the operating
system used by the container.

To build the container, we will load the apptainer module and then use the
apptainer build command as follows:

To see the metadata associated with a container run the following:

We can use apptainer run as follows to execute our runscript

 Summary



Bootstrap: docker
From: osgeo/gdal:ubuntu-full-3.6.3

%help
 This container is intended to use a pre-built gdal image and install the
 `geopandas` python library.

%post
 curl -sSL https://bootstrap.pypa.io/get-pip.py -o get-pip.py
 python3 get-pip.py && rm get-pip.py
 pip install geopandas

%runscript
 echo "The geopandas version is `pip freeze | grep geopandas`"

%labels
 Author hpc@uconn
 Version v0.1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

›

module load apptainer
apptainer build geopandas.sif geopandas.def1

2

›

apptainer inspect geopandas.sif
1
›

apptainer run geopandas.sif
1
›



https://geopandas.org/en/stable/getting_started.html
https://hub.docker.com/r/osgeo/gdal

Choose a pre-built image (usually from the Docker hub).

Use %files to transfer local files to the container (if needed).

In the %post section, you can use bash to install the software you need in
your container.

 Example definition file used to setup Ansys
Rocky through Apptainer and apptainer command
to call Ansys Rocky 

Bootstrap: docker
From: centos:7

%post

yum install -y squashfs-tools
yum install -y fontconfig
yum install -y mlocate
yum install -y rsync
yum install -y pciutils
yum install -y alsa-lib
#yum install -y nss-tools
#yum install -y firefox
yum install -y cmake pkg-config
yum install -y xorg-x11-server-Xorg xorg-x11-xauth xorg-x11-apps
yum install -y mesa-libGL-devel mesa-libGLU mesa-dri-drivers mesa-libGLw-devel.x86_64
yum install -y qt5-qtbase qt5-qtbase-devel
yum install -y glx-utils

#export NOW=`date`
#export TZ=America/New_York
#export LANGUAGE=en_US.UTF-8
#export LC_ALL=en_US.UTF-8
#export LANG=en_US.UTF-8
#export LC_CTYPE=en_US.UTF-8
#export LSTC_LICENSE=network
#export LSTC_LICENSE_SERVER=1055@engr-license3.engr.uconn.edu
#export ANSYS241_DIR=/gpfs/sharedfs1/admin/hpc2.0/apps/ansys/2024R1/v241
#export ANSYSLMD_LICENSE_FILE=/gpfs/sharedfs1/admin/hpc2.0/apps/ansys/2024R1/shared_files/licensing/ansyslmd.ini
#export QT_DEBUG_PLUGINS=1

%environment
export NOW=$NOW
export LANGUAGE=en_US.UTF-8
export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8
export LC_CTYPE=en_US.UTF-8

export LSTC_LICENSE=network
export LSTC_LICENSE_SERVER=1055@engr-license3.engr.uconn.edu
#export ANSYS241_DIR=/gpfs/sharedfs1/admin/hpc2.0/apps/ansys/2024R1/v241
export ANSYSLMD_LICENSE_FILE=/gpfs/sharedfs1/admin/hpc2.0/apps/ansys/2024R1/shared_files/licensing/ansyslmd.ini
export ANSYS241_DIR=/ansys/v241
export AWP_ROOT241=/ansys/v241

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

›

An interactive GPU job needs to be submitted, the apptainer module loaded,
and the following apptainer command to call Ansys Rocky:

Errors will show up, but say Y to the prompt Ansys Rocky gives about
overwriting:

If other errors show up, ignore the errors and rerun the above apptainer
command a couple of more times until Ansys Rocky loads. The errors are
Red Herring errors and can be ignored.

 Related articles

%runscript
echo "Container was created $NOW"
echo $LANGUAGE
echo $LC_ALL
echo $LANG
echo $LC_CTYPE
echo $LSTC_LICENSE
echo $LSTC_LICENSE_SERVER
echo $ANSYS241_DIR
echo $ANSYSLMD_LICENSE_FILE
echo $AWP_ROOT241

%labels
Author hpc@uconn
Version v0.1

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

apptainer exec --nv --unsquash -H $HOME:/home -B /gpfs/sharedfs1/admin/hpc2.0/apps/ansys/2024R1:/ansys -B /gpfs/sharedfs1/directory/on/HPC/here:/shared/PI(group)/directoryHere AnsysRocky.sif /ansys/v241/rocky/Rocky
1
›

mv: try to overwrite ‘/ansys/v241/rocky/Rocky.desktop’, overriding mode 0775 (rwxrwxr-x)? y
1
›



Apptainer Guide
18 Apr, 2025



Advanced Apptainer Guide
22 Apr, 2024



https://kb.uconn.edu/space/SH/26231799924/Apptainer+Guide
https://kb.uconn.edu/space/SH/26270662737/Advanced+Apptainer+Guide

