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1 Some aspects of the crystal field theory

In the following sections a brief overview on basic aspects of CEF theory is given and
applications are mostly made in the context of Rare Earth ions which, in general, pos-
sess well defined localized magnetic moments as it is the case e.g., in filled skutterudites
and in many other intermetallic compounds.

1.1 Magnetic properties of free ions

The Hamiltonian to describe magnetic atoms is given by

Htot = H0 + H1 + Hso + HCF + HZe (1)

The various contributions are described in the following. The most important part is
given by the sum of the kinetic energy and an effective radial potential.

H0 =
N�

i=1

�

−
h̄2

2m
∆i + V (ri)

�

(2)

Four quantum numbers n, l, ml, ms are satisfactory to describe the state of an elec-
tron in the atom (n . . . principal quantum number, l . . . orbital angular momentum
quantum number, ml, ms are the respective magnetic quantum numbers).

• l = 0, 1, 2, 3, . . . , (n− 1)

• ml = −l, (−l + 1), . . . , 0, . . . , (l − 1), l

• s = 1/2

• ms = ±1/2

The eigenstates of the Hamiltonian H0 are fully antisymmetric linear combinations
of single electron wave functions, which are usually written down in the form of Slater
determinants.

The most important perturbation to the radial symmetric Hamiltonian comes from
the electrostatic electron-electron interaction and is represented by H1.

H1 =
1

8π�0

�

i�=j

e2

rij
+

1

4π�0

N�

i=1

�

−
Ze2

ri
− V (ri)

�

(3)

In order to account for this interaction within a perturbation theory it is convenient
to use linear combinations of Slater determinants, which are simultaneously eigenfunc-
tions of H0 and of the total orbital momentum operator L and of the total spin S.
The degeneracy of the ground state is partly lifted by considering the action of the
electron-electron interaction H1. The orbital and spin quantum numbers l and s of the
ground state multiplet the follow from Hund’s first and second rule [1].
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• The combination of �si that gives the lowest energy (i.e. the most stable) is that
with the highest value of (2s + 1).

• If when the first rule has been satisfied there are several possible l values having
the same value of (2s + 1), that with the largest l will be the most stable.

Hund’s rules have full theoretical justification only in a very limited cases, but there
are very little doubts of their validity. The argument to support them is as follows.

• Two electrons in the same orbital with opposite spins must involve large electro-
static electron-electron repulsion because of the proximity of the two electrons.
Energy is lowered if dual occupations are minimised, giving as many like electrons
as possible.

• Having satisfied the first condition, if the electrons orbit in the same sense
electron-electron repulsive interactions are minimised because the electrons spend
more of the time further apart.

Beside the kinetic- and the Coulomb energy, the spin-orbit coupling Hso and the
crystal field interaction HCF is of particular importance.

Hso =
N�

i=1

ζ(ri)�li�si (4)

HCF = −|e|
N�

i=1

Vc(�ri) (5)

Elements of the 3d and the 4f group possess permanent magnetic moments:

• 3d - series . . . l = 2: Fe, Co, Cr, Mn . . . ;

• 4f - series . . . l = 3: Ce, Nd, . . . , Tm, Yb

While for 4f systems Hso � HCF , 3d systems behave opposite: Hso � HCF . The
reason for this is (i) the fact that the 4f electron density is more concentrated in the
inner part of the atom than that of the 3d electrons and consquently the crystal field
experienced by the 4f electrons is screened by outer electrons. Furthermore (ii) the
spin orbit interaction is proportional to the number of electrons and higher in the case
of 4f electrons. Therefore to a good approximation the 3d elements can be treated
in the strong coupling limit, i.e. Hso � HCF . Usually the action of the crystal field
leads to a ground state with l = 0 (quenching of the orbital moment). This can be
understood by the simple argument, that the strong crystal field completely stops the
orbital movement of the 3d electrons.
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Figure 1: General splitting scheme of a 6-fold degenerate system.

In the following we will focus on the case of 4f , where Hso � HCF . 1 We now
consider Hso as a perturbation to the ground state. It follows that ml and ms are no
longer good quantum numbers because the spin orbit interaction does not commute
with Lz and Sz. However, it commutes with L2 and S2 and all components of the
total angular momentum J = L + S. Therefore the multiplets of a free 4f ion can
be characterized by the quantum numbers |lsjmj�. Fig. 1 gives an overview on the
relevant energy scales of the problem.

The practical calculation of the total angular momentum follows then from Hund’s
third rule.

The most stable configurations result from

• j = |l − s| . . . less than half filled shells

• j = |l + s| . . . more than half filled shells

• j = s . . . half filled shell (l = 0).

The corresponding magnetic moments are

|µL| = µB|L| = µB

�
l(l + 1), (6)

|µs| = gSµB|S| = 2µB

�
s(s + 1), (7)

1
Note that for most rare earth elements this is a good approximation, exceptions are the Sm

3+

and the Eu
3+

ion with a spin orbit splitting of less than 100 meV.
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where µB is the Bohr magneton. In a classsical view because of the spin-orbit
interaction the resultant vectors �L and �S are precessing about their vector sum �J . To
account for the different weight of the spin and the orbital contribution to the total
angular momentum, the Landé factor gj is introduced. In quantum mechanical terms
the Landé factor is introduced by applying the Wigner Eckhardt theorem to the ground
state matrix elements of the total magnetic moment, which is given by:

�µ = �µL + �µS = µB(L + 2S) (8)

According to the Wigner Eckhardt theorem within the ground state multiplet
|lsj,mj = −j, . . . , +j > the matrix elements of any pair of vectors (such as for in-
stance the magnetic spin moment and the total angular momentum) are proportional.
Applying this relation to the total magnetic moment and the total angular moment
yields

|µ| = gjµB

�
j(j + 1) (9)

with the Landé factor

gj = 1 +
j(j + 1) + s(s + 1)− l(l + 1)

2j(j + 1)
(10)

Borderline cases: gj = 2 for l = 0 and gj = 1 for s = 0. This defines the magnetic
moment of a single atom. Assuming for the moment, that the crystal field interaction
is zero, the magnetic properties of free ions can be discussed.

In the absence of external magnetic fields, all the atoms with equal magnetic mo-
ments have equal energy. If an external magnetic field �B is applied, this degeneracy is
lifted by the action of HZe.

HZe = −�µ �B (11)

Provided that the field is applied along the z-axis, the different eigenstates can be
characterized by the magnetic quantum number mj, the corresponding energies are

Emj = −�lsjmj|�µ|lsjmj� ·
�B = −gµBmjB (12)

Then the energy depends on the thermal occupation of the 2j + 1 sub-levels, all of
which differ in their mj value.

The magnetic sub-levels are occupied according to the laws of statistical mechanics,
the lowest energy having the largest population. The relative population P of a sub-
level mj is given by

P (mj) =
exp(−Emj/kBT )

�
exp(−Emj/kBT )

. (13)
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1.2 CEF Hamiltonian

Similar to a magnetic field, an electric field is able to lift, at least partially, the (2j +
1)-fold degenerate ground state. Such an electric field may be created by the ions
surrounding regularly a rare earth ion in a crystal. According to the Kramers theorem,
there remains a certain degeneracy of the states:

• if the total angular momentum is half-integer, i.e, j = 5/2, 7/2, 9/2 . . ., the
minimum degeneracy is 2; such a state is a doublet. These systems are so called
Kramers ions.

• if the total angular momentum is integer, i.e, j = 4, 5, 6 . . ., the degeneracy can
be totally lifted. But in general, there is a mixture of singlet, doublet, triplet and
quartet states. These systems are so called non-Kramers ions.

The particular scheme of a system is determined from material dependent properties
such as charges, but independently depends on both the total angular momentum and
the crystal symmetry. A lower symmetry causes lower degeneracies of levels. Quartets
may be found in cubic structures only.

Assume that a 4f -ion is situated in a potential Vc, which is created from the neigh-
bouring ions (compare Fig. 2). This potential acts in a similar way as the Stark-effect

x-axis

y-axis

Rare earth RE3+
ri

Rj

R

(4f)N = (nl)N

Qj

Charge distribution
(R)    

Figure 2: Geometric relations for the determination of the crystal electric field.

and causes, at least, a partial lifting of the (2j + 1)-fold ground state degeneracy of
the free 4f ion. If we further assume that the 4f wavefunctions do not overlap with
that of the neighbouring ions, then the potential Vc(�r) fulfils Laplace’s equation, i.e.,
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∇2Vc = 0 and for the crystal field contribution the following relation is valid:

Vc(�r) =
1

4π�0

� ρ(�R)

|�r − �R|
d3R (14)

with a charge density ρ(�R) and the series expansion

1

|�r − �R|
=

1
�

(r2 + R2 − 2rR cos θ)
=

1

R

∞�

l=0

�
r

R

�l

Pl(cos θ) (15)

for all r < R. The Legendre-polynoms Pl(cos θ) can be expressed in terms of spherical
harmonics Y m

l . . ..

Pl(cos θ) =
4π

2l + 1

l�

m=−l

Y m
l (Ωr)Y

m∗
l (ΩR). (16)

If it is assumed that the ions i = 1, 2, 3, ... carry point charges qi (point charge

model, PCM) we have

Vc(�r) =
1

4π�0

�

i

qi

|�r − �Ri|
(17)

In the following we will not use the expansion (16) but instead of spherical harmonics
use tesseral harmonics, which are real and defined according to [2]2 and listed explicitely
in appendix B.

Z0
l = Y 0

l (18)

Zm
l =

1
√

2

�
Y −m

l + (−1)mY m
l

�
. . . m > 0

Zm
l =

i
√

2

�
Y m

l + (−1)mY −m
l

�
. . . m < 0

Inserting the tesseral harmonics into Eqn. (16) leads to

Vc(�r) =
∞�

l=0

l�

m=−l

rlZm
l (Ωr)

1

2l + 1

�
d3R

ρ(�R)Zm
l (ΩR)

�0Rl+1
(19)

If on the r.h.s. of this equation the following substitutions [3, 4]

γm
l =

1

2l + 1

�
d3R

ρ(�R)Zm
l (ΩR)

�0Rl+1
(20)

2
note that there are different definitions of tesseral harmonic functions in the literature, we use

here the definition given in [2]
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and

Hlm =
N�

i=1

rl
iZ

m
l (δi, φi) (21)

are made, the crystal field Hamiltonian can be expressed as

HCF = −|e|
N�

i=1

Vc(�ri) =
�

l,m

γm
l Hlm. (22)

For a given multiplet, the matrix elements of HCF are proportional to those of
equivalent operators, which contain Jz or J± (Wigner-Eckhart-theorem).

Example:

H
0
2 =

�

i

r
2
i

�
5

4π

1

2

�
3 cos

2
δi − 1

�
=

�

i

r
2
i

�
5

4π

1

2

�
3z

2
i − r

2
i

r
2
i

�

(23)

Here we have made the following assignments (spherical-polar co-ordinates):

x = r sin δ cos φ → Jx

y = r sin δ sinφ → Jy

z = r cos δ → Jz r → J

as well as

xy → (1/2)(JxJy + JyJx)

and

J± = Jx ± iJy

For example, the matrix elements of the crystal field Hamiltonian H
0
2 within the ground state

multiplett |lsjmj� of a rare earth ion can be written as

�lsjmj |H
0
2 |lsjm

�
j� = �lsjmj |

�

i

r
2
i

�
5

4π

1

2

�
3z

2
i − r

2
i

r
2
i

�

|lsjm
�
j� (24)

=

�
5

4π

1

2
αJ�r

2
��lsjmj |

�
3J

2
z − j(j + 1)

�
|lsjm

�
j�

with the radial matrix elements defined by

�r
l
� =

�
|R4f (r)|

2
r
l+2

dr (25)

These matrix elements have been calculated for different rare earth atoms using the

4f radial wave functions R4f (r) as determined by the Hartree Fock method or similar, see

e.g. [5, 6].

By defining Stevens operators Om
l according to a few rules [7], e.g.,

O0
2 =

�
3J2

z − j(j + 1)
�

(26)
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Table 1: Orbital (l), spin (s) and total angular momentum (j) quantum numbers,
Landé factor gj and Stevens factors αj, βj, γj for rare earth and actinide ions.
ion l s j gj αj × 102 βj × 104 γj × 106

Ce3+ 3 1/2 5/2 6/7 -5.7143 63.4921 0.0000
Pr3+,Ce2+,U4+ 5 1 4 4/5 -2.1010 -7.3462 60.9940
Nd3+,Pr2+,U3+,Np4+ 6 3/2 9/2 8/11 -0.6428 -2.9111 -37.9880
Pm3+,Nd2+ 6 2 4 3/5 0.7713 4.0755 60.7807
Sm3+,Pm2+ 5 5/2 5/2 2/7 4.1270 25.0120 0.0000
Eu3+,Sm2+ 3 3 0 - 0.0000 0.0000 0.0000
Gd3+,Eu2+ 0 7/2 7/2 2 0.0000 0.0000 0.0000
Tb3+,Gd2+ 3 3 6 3/2 -1.0101 1.2244 -1.1212
Dy3+,Tb2+ 5 5/2 15/2 4/3 -0.6349 -0.5920 1.0350
Ho3+,Dy2+ 6 2 8 5/4 -0.2222 -0.3330 -1.2937
Er3+,Ho2+ 6 3/2 15/2 6/5 0.2540 0.4440 2.0699
Tm3+,Er2+ 5 1 6 7/6 1.0101 1.6325 -5.6061
Yb3+,Tm2+ 3 1/2 7/2 8/7 3.1746 -17.3160 148.0001

the operators which initially were spatial dependent are now simply proportional to
angular momentum operators. For each tesseral harmonic function a Stevens operator
can be defined by substituting x, y and z by the components Jx, Jy and Jz, respectively
and symmetrizing the resulting expression. A complete list of these Stevens operators
is given in appendix A. In addition, the coefficients of the polynoms in x,y and z in
the definition of the tesseral functions are denoted by pm

l , e.g.

p0
2 =

�
5

4π

1

2
(27)

Dropping for simplicity the �lsjmj| in the notation and keeping in mind, that the
following equations hold only for the matrix elements of the ground state multiplet of
the rare earth ion this yields

H0
2 =

�

i

r2
i

�
5

4π

1

2

�
3z2

i − r2
i

r2
i

�

(28)

→ p0
2αj�r

2
�O0

2( �J) (29)

and in general

Hm
l =

�

i

rl
iZ

m
l (Ωi) = pm

l Θl�r
l
�Om

l ( �J) (30)
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Table 2: List of radial matrix elements �rl� for l = 2, 4 and 6 for rare earth and actinide
ions [6, 8, 4]
ion �r2�(Å2) �r4�(Å4) �r6�(Å6)
Ce3+ 0.3666 0.3108 0.5119
Pr3+ 0.3350 0.2614 0.4030
Nd3+ 0.3120 0.2282 0.3300
Pm3+ 0.2899 0.1991 0.2755
Sm3+ 0.2728 0.1772 0.2317
Eu3+ 0.2569 0.1584 0.1985
Gd3+ 0.2428 0.1427 0.1720
Tb3+ 0.2302 0.1295 0.1505
Dy3+ 0.2188 0.1180 0.1328
Ho3+ 0.2085 0.1081 0.1181
Er3+ 0.1991 0.0996 0.1058
Tm3+ 0.1905 0.0921 0.0953
Yb3+ 0.1826 0.0854 0.0863
U4+ 0.5718 0.5985 1.0491
U3+ 0.6569 0.8552 1.9882
Np4+ 0.5276 0.5100 0.8300
Nd2+ 0.3898 0.4191 0.9980
Sm2+ 0.3352 0.3028 0.6271
Eu2+ 0.3075 0.2641 0.5178
Gd2+ 0.2879 0.2333 0.4359
Tb2+ 0.2711 0.2082 0.3729
Dy2+ 0.2557 0.1875 0.3235
Ho2+ 0.2425 0.1701 0.2837
Er2+ 0.2307 0.1552 0.2514
Tm2+ 0.2198 0.1426 0.2249
Yb2+ 0.2100 0.1315 0.2027
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This leads to the famous notation

HCF =
�

l,m

Bm
l Om

l (31)

with
Bm

l = −|e|pm
l γm

l �r
l
4f�Θl (32)

Θl =






αj . . . l = 2
βj . . . l = 4
γj . . . l = 6

(33)

The Bm
l or γm

l are the crystal field parameters, which can be determined from the
experiment, or can be calculated from different models among them the PCM. The
additional parameters and coefficients are already tabulated and given in tables 1 and
2.

1.3 Symmetry considerations

1.3.1 Disappearance of terms with l �= 2, 4, 6

A major simplification of the theory is due to the fact that for 4f electrons all terms
with l > 6 disappear in equation (31). This is due to the fact that the 4f wave functions
�lsjmj| are a linear combination of Slater Determinants of single particle wave functions
of the form Φmms

4f (�r) = R4f (r)Y m
3 (Ω)χms

i . Therefore, the matrix elements of rlZm
l (Ω)

in (30) are a linear combination of integrals of the form

�
Φmms∗

4f (�r)rlY m��

l (Ω)Φm�m�
s

4f (�r)r2drdΩ = �rl
�δmsm�

s

�
(−1)mY −m

3 (Ω)Y m��

l (Ω)Y m�

3 (Ω)dΩ

(34)
From elementary quantum mechanics it is known, that the spherical harmonics

Y m
l are eigenfunctions of the angular momentum operator. The addition of angular

momentum is done according to the Clebsch Gordon expansion. From this Clebsch
Gordan expansion the spherical harmonic addition relation can be derived (for a proof
see for example [9], page 1046, Eqn. 21), which for the special case of l = 3 can be
written as

Y −m
3 (Ω)Y m�

3 (Ω) =
6�

l=0

l�

m��=−l

7
�

4π(2l + 1)
�3, 3; 0, 0|l, 0��3, 3;−m, m�

|l,m�� > Y m��

l (Ω)

(35)
The product in Eqn. (34) can be written as a linear combination of prod-

ucts of two spherical harmonics, where l takes the values l = 0, . . . , 6. Moreover,
keeping in mind that the Clebsch-Gordon coefficients fulfil the symmetry relation
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�l1, l2;−m1,−m2|l,m� = (−1)l1+l2+l�l1, l2; m1, m2|l,m� we note that the coefficient
�3, 3; 0, 0|l, 0� is zero for odd l. Because of the orthogonality of the spherical harmonics
all terms with l �= 2, 4, 6 disappear in Eq. (34) and consequently also in (31).

1.3.2 Disappearance of CEF parameters due to Point Symmetry of the
CEF

If coordinate axes are properly chosen the local point symmetry at the rare earth site
further limits the number of nonzero crystal field parameters. In order to discuss this
issue we refer to the definition of the coefficients γm

l in Eqn. (20).

the z-axis is an p-fold axis of symmetry keeping in mind that the tesseral
harmonics are a sum of spherical harmonics and the the φ dependence of
these is given by eimφ such a symmetry axis allows to split the integral
in (20) into a sum of p integrals. These only differ by the factor eim2π/p.
Consequently, the coefficients γm

l are proportional to the sum
�p−1

s=0 eim2πs/p,
which is a geometrical sum

�p−1
s=0 xs = (1 − xp)/(1 − x)). Accordingly, the

γm
l vanish unless m is a integer multiple of p .

the y-axis is a twofold axis of symmetry such a twofold symmetry axis is
described in polar coordinates by the tranformation Θ → π − Θ and φ →
−π−φ. Writing the integral in (20) as a sum of two integrals and applying
this transformation and using the relations Y m

l (Θ,−φ) = (−1)mY m
l (Θ, φ),

Y m
l (Θ − π, φ + π) = (−1)lY m

l (Θ, φ) leads to a factor 1 + (−1)l+m. Conse-
quently, all γm

l with l + m odd vanish.

Such Symmetry considerations allowed to compile table 3, where the nonvanishing
crystal field parameters for all crystallographic point groups are given.
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1.4 Cubic and hexagonal symmetries

If the crystal field Hamiltonian is applied onto the wave function of the 4f ion, one
obtains the energies of the eigenstates created by crystal field splitting.

HCF |Ψ� = E|Ψ� (36)

In the case of a cubic point group symmetry, the appropriate crystal field Hamilto-
nian is given by

Hcub.
CF = B0

4

�
O0

4 + 5O4
4

�
+ B0

6

�
O0

6 − 21O6
6

�
(37)

The crystal field is fully determined by 2 parameters B0
4 and B0

6 . For Ce3+ we have
additionally γj = 0; i.e., in this case B0

4 is the only relevant parameter.
The resulting eigenstates are a Γ7-doublet and a Γ8-quartet

|Γ7� = a| ± 5/2� − b|∓ 3/2�

|Γ8� =

�
| ± 1/2�
b| ± 5/2�+ a|∓ 3/2�

(38)

which can be represented in terms of Jz with a = (1/6)1/2 and b = (5/6)1/2. For a
Ce3+ ion it follows immediately

B0
4 = ±∆/360 (39)

There, ∆ is the energy difference between Γ7 and Γ8. In Fig. 3 is displayed the 4f
charge density of a cerium 3+ ion for a cubic symmetry.

The crystal field Hamiltonian for hexagonal symmetry is written as

Hhexa
CF = B0

2O
0
2 + B0

40
0
4 + B0

6O
0
6 + B6

6O
6
6 (40)

Again, 6-th order term vanishes in the case of cerium systems; therefore,

CeHhexa
CF = B0

2O
0
2 + B0

40
0
4 (41)

The crystal field in hexagonal symmetry yields “pure” eigenstates, determined from
Jz. If we assume that

|Γ7� = | ± 1/2� (42)

|Γ8� = | ± 5/2� (43)

|Γ9� = | ± 3/2� (44)

the energies of a crystal field doublet are calculated owing to the application of

HCF |ΨΓ� = EΓ|ΨΓ� (45)
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Ce3+ ion j = 5/2
hexagonal        cubic

symmety

|1/2 >

|3/2 >

|5/2 >

8

7

Figure 3: Contours of the 4f charge density of a Ce3+ ion in hexagonal (a) and in cubic
(b) symmetry.

i.e.,

E7 = −8B0
2 + 120B0

4 (46)

E8 = 10B0
2 + 60B0

4 (47)

E9 = −2B0
2 − 180B0

4 . (48)

The charge density distribution of a Ce3+ ion created from the crystal electric field is
also shown in Fig. 3.

1.5 Example: an Yb ion in a hexagonal crystalline electric
field

Recall that the crystal field Hamiltonian for hexagonal systems reads (see table 3 and
Eqn. 40):

Hhexa
CF = B0

2O
0
2 + B0

4O
0
4 + B0

6O
0
6 + B6

6O
6
6 (49)
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where the Stevens operators are given by (see the appendix):

O0
2 = [3J2

z −X] with X = j(j + 1)

O0
4 = [35J4

z − (30X − 25)J2
z + 3X2

− 6X]

O0
6 = [231J6

z − (315X − 735)J4
z + (105X2

− 525X + 294)J2
z − 5X3 + 40X2

− 60X]

O6
6 =

1

2
[J6

+ + J6
−
].

In the subsequent section we outline in a step-by-step path all details to evaluate
the eigenvalues and the eigenstates of the CEF levels of a typical compound based on
the rare earth element Yb, crystallizing in a hexagonal crystal structure. Moreover,
we assume that the electronic environment can be composed from a number of point
charges. Yb should be in its trivalent state, i.e, Yb3+. This state can be associated
with electronic configuration 4f 13 revealing a total angular momentum j = 7/2 and an
effective magnetic moment µeff = 4.54 µB.

Writing for simplicity m instead of mj, the following notations and rules apply for
practical calculations:

J+ ≡ Jx + iJy J− ≡ Jx − iJy

J+|jm� = [j(j + 1)−m(m + 1)]1/2
|jm + 1�

J−|jm� = [j(j + 1)−m(m− 1)]1/2
|jm− 1�

Jz|jm� = m|jm�

J2
|jm� = j(j + 1)|jm�

�jm|j�m�
� = δmm�δjj�

The individual contributions of the various Om
l will now be evaluated by computing

the respective matrix elements.

1.5.1 The Crystal Field Hamiltonian in Matrix Notation

O0
2: All those states will be combined and displayed, which reveal finite matrix elements

for O0
2.

O0
2 = 3J2

z − j(j + 1)

3[�−7/2|J2
z |− 7/2�]− 7/2(7/2 + 1) = 21

3[�−5/2|J2
z |5/2� − 7/2(7/2 + 1) = 3

15



3[�−3/2|J2
z |− 3/2� − 7/2(7/2 + 1) = −9

3[�−1/2|J2
z |− 1/2� − 7/2(7/2 + 1) = −15

3[�1/2|J2
z |1/2� − 7/2(7/2 + 1) = −15

3[�3/2|J2
z |3/2� − 7/2(7/2 + 1) = −9

3[�5/2|J2
z |5/2� − 7/2(7/2 + 1) = 3

3[�7/2|J2
z |7/2� − 7/2(7/2 + 1) = −9

O0
4

O0
4 = [35J4

z − 30J2J2
z + 25J2

z − 6J2 + 3J4]

35[�−7/2|J4
z |− 7/2�]− 30 · (7/2) · (9/2)[�−7/2|J2

z |− 7/2�]+

25[�−7/2|J2
z |− 7/2�]− 6 · (7/2) · (9/2) + 3 · (7/2)2

· (9/2)2 = 420

35[�−5/2|J4
z |− 5/2�]− 30J2[�−5/2|J2

z |− 5/2�]+

25[�−5/2|J2
z |− 5/2�]− 6 · (7/2) · (9/2) + 3 · (7/2)2

· (9/2)2 = −780

�−3/2| . . . |− 3/2� = −180

�−1/2| . . . |− 1/2� = 540

The matrix elements associated with +1/2, +3/2, +5/2, +7/2 have the same values
as the above one with -1/2, -3/2, -5/2, -7/2.

O0
6

231[�−7/2|J6
z |− 7/2�]− 315 · (7/2) · (9/2)[�−7/2|J4

z |− 7/2�]+

735[�−7/2|J4
z |− 7/2�] + 105 · (7/2)2

· (9/2)2[�−7/2|J2
z |− 7/2�]−

525 · (7/2) · (9/2)[�−7/2|J2
z |− 7/2�] + 294[�−7/2|J2

z |− 7/2�]−

5 · (7/2)3
· (9/2)3 + 40 · (7/2)2

· (9/2)2 + 60 · (7/2) · (9/2) = 1260

16



�−5/2| . . . |− 5/2� = −6300

�−3/2| . . . |− 3/2� = 11340

�−1/2| . . . |− 1/2� = −6300

O6
6: The subsequent equations demonstrate how the ladder operators exert on a

certain state.

J6
+|−7/2� ∝ c5J

5
+|−5/2� ∝ c4J

4
+|−3/2� ∝ c3J

3
+|−1/2� ∝ c2J

2
+|+1/2� ∝ c1J+|3/2� = c|5/2�

J6
+|−5/2� ∝ d5J

5
+|−3/2� ∝ d4J

4
+|−1/2� ∝ d3J

3
+|1/2� ∝ d2J

2
+|+3/2� ∝ d1J+|5/2� = d|7/2�

J6
−
|7/2� . . . = f |− 5/2�

J6
−
|5/2� . . . = g|− 7/2�.

Let us now evaluate in detail J6
+|j, m� = J6

+|7/2,−7/2�:

[j(j+1)−m(m+1)]1/2 = [(7/2)·(9/2)−(−7/2)·(−5/2)]1/2 = [(63/4)−(35/4)]1/2 =
√

7

and

J6
+|7/2,−7/2� =

√
7J5

+|7/2,−5/2� =
√

7[(63/4)− (15/4)]1/2J4
+|7/2,−3/2� =

√
7 · 12[(63/4)−(3/4)]1/2J3

+|7/2,−1/2� =
√

7 · 12 · 15[(63/4)−(1/2)(1/2)]1/2J2
+|7/2, 1/2� =

√
7 · 12 · 15 · 16[(63/4)− (1/2)(3/2)]1/2J+|7/2, 3/2� =

√
7 · 12 · 15 · 16 · 15[(63/4)− (3/2)(5/2)]1/2

|7/2, 5/2� =
√

7 · 12 · 15 · 16 · 15 · 12|7/2, 5/2� = 720
√

7|7/2, 5/2�

It follows that
�5/2|J6

+|− 7/2� = 720
√

7

�7/2|J6
+|− 5/2� = 720

√
7

�−7/2|J6
−
|5/2� = 720

√
7

�−5/2|J6
−
|7/2� = 720

√
7
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Adding together all terms to form 8× 8 matrices reveals for the hexagonal case

7/2Hhexa
CF = B0

2 ×





−7/2 −5/2 −3/2 −1/2 1/2 3/2 5/2 7/2

−7/2 21 0 0 0 0 0 0 0
−5/2 0 3 0 0 0 0 0 0
−3/2 0 0 −9 0 0 0 0 0
−1/2 0 0 0 −15 0 0 0 0
1/2 0 0 0 0 −15 0 0 0
3/2 0 0 0 0 0 −9 0 0
5/2 0 0 0 0 0 0 3 0
7/2 0 0 0 0 0 0 0 21





+

+ B0
4 ×





−7/2 −5/2 −3/2 −1/2 1/2 3/2 5/2 7/2

−7/2 420 0 0 0 0 0 0 0
−5/2 0 −780 0 0 0 0 0 0
−3/2 0 0 −180 0 0 0 0 0
−1/2 0 0 0 540 0 0 0 0
1/2 0 0 0 0 540 0 0 0
3/2 0 0 0 0 0 −180 0 0
5/2 0 0 0 0 0 0 −780 0
7/2 0 0 0 0 0 0 0 420





+

+ B0
6 ×





−7/2 −5/2 −3/2 −1/2 1/2 3/2 5/2 7/2

−7/2 1260 0 0 0 0 0 0 0
−5/2 0 −6300 0 0 0 0 0 0
−3/2 0 0 11340 0 0 0 0 0
−1/2 0 0 0 −6300 0 0 0 0
1/2 0 0 0 0 −6300 0 0 0
3/2 0 0 0 0 0 11340 0 0
5/2 0 0 0 0 0 0 −6300 0
7/2 0 0 0 0 0 0 0 1260





+

+ B6
6 ×





−7/2 −5/2 −3/2 −1/2 1/2 3/2 5/2 7/2

−7/2 0 0 0 0 0 0 720
√

7 0
−5/2 0 0 0 0 0 0 0 720

√
7

−3/2 0 0 0 0 0 0 0 0
−1/2 0 0 0 0 0 0 0 0
1/2 0 0 0 0 0 0 0 0
3/2 0 0 0 0 0 0 0 0
5/2 720

√
7 0 0 0 0 0 0 0

7/2 0 720
√

7 0 0 0 0 0 0





(50)
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1.5.2 Diagonalization of the Crystal Field Hamiltonian

Combining the matrices B0
2O

0
2, B0

4O
0
2, B0

6O
0
2 and B0

6O
0
6 of Eqn. 50 gives an 8 × 8

matrix, which can be diagonalized in order to obtain the energies of the several states
in a crystal field described by the CEF Hamiltonian Eqn. 49. All the diagonal elements
correspond to contributions from Om

l with m = 0, the off-diagonal elements derive from
Om

l with m �= 0. The energies of the various states are then given by:

E11 = 21 · B0
2 + 420 · B0

4 + 1260 · B0
6 + 0 · B0

6

E22 = 3 · B0
2 − 780 · B0

4 − 6300 · B0
6 + 0 · B0

6

E33 = −9 · B0
2 − 180 · B0

4 + 11340 · B0
6 + 0 · B0

6

E44 = −15 · B0
2 + 540 · B0

4 − 6300 · B0
6 + 0 · B0

6

E55 = −15 · B0
2 + 540 · B0

4 − 6300 · B0
6 + 0 · B0

6

E66 = −9 · B0
2 − 180 · B0

4 + 11340 · B0
6 + 0 · B0

6

E77 = 3 · B0
2 − 780 · B0

4 − 6300 · B0
6 + 0 · B0

6

E88 = 21 · B0
2 + 420 · B0

4 + 1260 · B0
6 + 0 · B0

6

E71 = 720
√

7 · B6
6

E82 = 720
√

7 · B6
6

E17 = 720
√

7 · B6
6

E28 = 720
√

7 · B6
6

When operators of the form Om
l with m �= 0 are involved, the wave functions (or eigen-

vectors) may consist of linear combinations of two or more m states. The operator Om
l

mixes m states differing by m. In order to obtain the eigenstates and the eigenenergies
of the above matrices, diagonalisation of the resulting 8 × 8 matrix has to be carried
out. This, of course, has to be done by help of appropriate computer programmes.
Diagonalisation rotates the coordinate axes so that the eigenvectors are no longer pure
m states, but instead are linear combinations of the type

�
am|m�, involving states

which differ by m. The energies of the eigenstates are functions of the Bm
l .

Formally, this procedure can be outlined as follows: The application of the Hamil-
tonian H to the states Γ = |lsjm� = |m�, i.e.,

H|Γ� = E|Γ� (51)

reveals the energy matrix
Vc = �m�

|H|m� (52)

Diagonalisation of Vc is made straightforwardly employing a unitary transformation U ,
i.e.,

V D
c = U+VcU (53)
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yielding the eigenfunctions |i�

|i� =
j�

m=−j

Ui,m|m� (54)

as well as the associated energy eigenvalues Ei. In a general case the eigenfunctions
are mixed states of the form:

|i� = Ui,−j|− j�+ Ui,−j+1|− j + 1�+ . . . (55)

with |Ui,−j|
2 + |Ui,−j+1|

2 + . . . = 1.

1.5.3 Point Charge Model A

Let us now consider a simple example of an Yb3+ ion in a crystal field produced by
two negative point charges i = 1, 2 of q1 = q2 = −0.2|e| situated at the positions
�ri = (0, 0,±4Å). In this case only the γ0

l with l = 2, 4, 6 are nonzero and can be
calculated according to Eqn. (20), which for the PCM can be rewritten as

γm
l =

1

2l + 1

�

i

qiZm
l (Ωi)

�0r
l+1
i

(56)

Using the table given for the tesseral harmonic functions Zm
l (see appendix) this

gives

γ0
2 =

−0.2|e|

5�0

�

i=1,2



1

4

�
5

π
[(3z2

i − r2
i )/r

5
i ]



 (57)

γ0
4 =

−0.2|e|

9�0

�

i=1,2

�
3

16

1
√

π
[35z4

i − 30z2
i r

2
i + 3r4

i )/r
9
i ]

�

γ0
6 =

−0.2|e|

13�0

�

i=1,2



 1

32

�
13

π
[(231z6

i − 315z4
i r

2
i + 105z2

i r
4
i − 5r6

i )/r
13
i ]





and inserting z1,2 = ±4 Å, ri = 4 Å, �0 = 8.85419× 10−12 As
Vm and e = 1.60217×

10−19 C, using (32) and looking up the Stevens factors and radial matrix elements for
the Yb3+ ion in tables 1 and 2, respectively, the values of the crystal field parameters
can be calculated.

B0
2 = −|e|p0

2γ
0
2�r

2
4f�αj = 0.261meV (58)

B0
4 = −|e|p0

4γ
0
4�r

4
4f�βj = −1.04× 10−4meV

B0
6 = −|e|p0

6γ
0
6�r

6
4f�γj = 2.81× 10−7meV
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In a similar way the crystal field parameters for pointcharges +0.1|e| situated on
the cornerpoints of a hexagon may be calculated. Assuming the hexagon is given by
(±2

√
3, 0, 0) Å, (±

√
3,±3, 0) Å and (±

√
3,∓3, 0) Å we obtain

B0
2 = 0.3013meV (59)

B0
4 = 1.2× 10−4meV

B0
6 = 3.603× 10−7meV

B6
6 = −8.324× 10−6meV

Taking the sum of the the crystal fields produced by the charges along the z-axis
(58) and on the hexagon (59) we arrive at the final result of our PCM calculation,
which is summarized in table 4

Table 4: Positions of point charges and crystal field parameters for an Yb3+ ion in a
hexagonal crystal field (model A).

pointcharges (|e|) x(Å) y(Å) z(Å)

-0.2 0 0 4
-0.2 0 0 -4
0.1 3.4641 0 0
0.1 -3.4641 0 0
0.1 1.73205 -3 0
0.1 -1.73205 3 0
0.1 1.73205 3 0
0.1 -1.73205 -3 0

CEF parameters Bm
l

B0
2 = 0.5622 meV

B0
4 = 1.6087× 10−5 meV
B0

6 = 6.412× 10−7 meV
B6

6 = −8.324× 10−6 meV

Diagonalisation of Eqn. 50 taking into account the CEF parameters Bm
l as given

in Table 4 reveals the eigenvalues and the eigenvectors of the problem. The following
eigenvalues Eii- expressed in Kelvin - with 0 ≤ i ≤ 8 are derived: 138.22, 138.22, -98.6,
-98.6, -59.14, -59.14, 19.54, 19.54

In general, these values are ordered such that the lowest energy is set to zero,
resulting now the following sequence: 236.83, 236.83, 0., 0., 39, 46, 39.46, 118.15,
118.15.
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Below, the eigenstates of these eigenvalues as derived from the diagonalisation are
arranged according to the sequence of energy:

0.00078|− 5/2� − 0.9999|7/2�,

0.9999|− 7/2�+ 0.00078|5/2�,

1.|1/2�,

1.|− 1/2�,

1.|3/2�,

1.|− 3/2�,

−0.9999|5/2� − 0.00078|7/2�,

0.00078|− 7/2�+ 0.9999|5/2� (60)

The knowledge of the eigenvalues and the eigenstates allows the calculation of
several physical properties, which will be described in the following.

1.5.4 Calculation of the 4f-charge density for Model A

The charge density operator of a 4f ion is given by elementary quantum mechanics as

ρ4f (�r) =
�

i

−|e|δ(�r − �ri) (61)

Here the index i runs from 1 to the number of 4f electrons. Using spherical coor-
dinates the δ-function in (61) can be rewritten

δ(�r − �ri) =
1

r2
δ(r − ri)δ(Ω− Ωi) (62)

δ(Ω− Ωi) =
1

4π

∞�

l

(2l + 1)Pl(cosθ) (63)

Substituting the Legendre Polynoms in (62) by spherical harmonics using the rela-
tion (16) we notice that the charge density operator can be written as a linear combi-
nation of products of spherical harmonics:

ρ4f (�r) = −
4π|e|

r2

�

i

δ(r − ri)
∞�

l=0

l�

m=−l

Y m
l (Ω)Y m∗

l (Ωi) (64)

In the calculation of the expectation value of the charge density operator for any
4f state the radial integrals yield the radial part of the 4f wave function:
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z               
                           

Figure 4: Model A 4f -charge density for an Yb3+ ion surrounded by point charges
(indicated by spheres) calculated at a temperature T = 10 K. The CEF parameters are
taken from Table 4. The charges along the z-axis are −0.2|e| and those in the hexagon
are 0.1|e|.

�ρ4f (�r)� = −4π|e||R4f (r)|
2
∞�

l=0

l�

m=−l

Y m
l (Ω)�

�

i

Y m∗
l (Ωi)� (65)

Keeping in mind, that the spherical harmonics are linear combinations of the
tesseral harmonics according to their definition in Eqn. (18) the expectation value
of the 4f charge density operator can be written as a linear combination of tesseral
harmonics.

�ρ4f (�r)� = |R4f (r)|
2

�

lm

σm
l Zm

l (Ω) (66)

According to Eqn. (65) the coefficients σm
l are proportional to �

�
i Z

m
l (Ωi)� and

can be evaluated by applying the operator equivalent method.
In order to do this we consider the product pm

l Θl�rl
4f��O

m
l �, which according to

Eqn. (30) is equivalent to
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pm
l Θl�r

l
4f��O

m
l � = �

�

i

Zm
l (Ωi)r

l
i� (67)

We now use the definition of Eqn. (61) to proof that

�
�

i

Zm
l (Ωi)r

l
i� =

−1

|e|

�
�ρ(�r)�Zm

l (Ω)rld3r (68)

Inserting (66) for the charge density operator on the right side of (68), and in-
tegrating keeping in mind the orthogonality of the harmonic tesseral functions leads
to

−1

|e|

�
�ρ(�r)�Zm

l (Ω)rld3r =
−1

|e|
�rl

4f�σ
m
l (69)

combining Eqns. (67) to (69) we get

σm
l = −|e|pm

l Θl�O
m
l � (70)

This yields an expression for the charge density, which may be evaluated for each
crystal field state |Γi�.

�Γi|ρ4f (�r)|Γi� = −|e||R4f (r)|
2

m�

l

pm
l Θl�Γi|O

m
l |Γi�Z

m
l (Ω) (71)

Multiplying Eqn. 71 by Boltzmann factors and summing over the different CEF
states, the thermal expectation value for the charge density at any temperature can be
calculated. In order to visualize the charge density, usually surfaces of constant charge
density are generated and plotted. Fig. 4 shows the result of the Yb3+ ion surrounded
by the point charges producing the crystal field.

1.5.5 Calculation of magnetic moments

Magnetic moments can be evaluated for each individual CEF level and are determined
by the eigenstates, the Landé factor and by the operators Jz and/or J±. Results
of such calculations impressively demonstrate why only in rare cases the observed
magnetisation of a certain system coincides with the simple expression M = gjj. The
magnetisation is derived by evaluating the appropriate matrix elements of each CEF
state.

For the �c direction the magnetisation follows from Mz = �Γi|Jz|Γi�, while those
perpendicular to the c-axis are derived from Mx = (1/2)�Γi|(J+ + J−)|Γi� and My =
−(1/2)i�Γi|(J+ − J−)|Γi�.
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J z operator In order to calculate the magnetic moment of simple and complicated
eigenstates, the following procedures have to be kept in mind:

Jz|j, mj� = mjh̄|j, mj�. The magnetic moment mz = gjµB�Γi|Jz|Γi� follows then
simply from mz = gjµB�j, mj|Jz|j, mj�.

Example Considering the eigenstate |5/2, 3/2� and gj = 6/7:
mj = gjµB�5/2, 3/2|Jz|5/2, 3/2� = gjµB(3/2)�5/2, 3/2||5/2, 3/2� = gj(3/2)δi,j =
6/7µB · 3/2 · 1 = 1.285µB

Ladder operators Definition: J± = Jx ± iJy

J±|j, mj� = h̄
�

j(j + 1)−mj(mj ∓ 1)|j, mj ± 1�. The magnetic moment follows
then via m± = gjµB�Γi|J±|Γi�.

Example Considering the eigenstate |5/2, 3/2� and gj = 6/7:
mj = gjµB�5/2, 3/2|J+|5/2, 3/2� =

gjµB

�
5/2 · 7/2− 3/2 · 5/2�5/2, 3/2||5/2, 5/2� = gjµB

√
5δi,j = 2.23µB · 0 = 0µB.

In order to obtain a finite magnetisation, states like �5/2, 3/2||5/2, 1/2� or
�5/2, 5/2||5/2, 3/2� or �5/2, 1/2||5/2,−1/2� have to be combined. Very frequently,
the actual wave function does not provide such eigenstates; therefore the magnetic
moments derived from the J± operators become zero. The above example would give
a magnetic moment only in the case

mj = gjµB�5/2, 5/2|J+|5/2, 3/2� = gjµB ·�
5/2 · 7/2− 3/2 · 5/2�5/2, 5/2||5/2, 5/2� = gj

√
5δi,j = 2.23µB · 1 = 2.23 µB.

Magnetic moments of model A As an example, we calculate the magnetisation
of the ground state of a hexagonal Yb compound, i.e., of the CEF level with lowest
energy as derived by the CEF parameters given in Table 4. Mz = gµB(�1/2|Jz|7/2� =
6/7µB · 0.5δij ≈ 0.428 µB The first eigenstate at 39.46 K with eigenfunction | ± 3/2�,
reveals a moment ±1.28 µB. Since both states have the same energy, they are two-fold
degenerate. The application of a small external field would split the CEF states lifting
therefore this degeneracy. Results of the magnetic moments associated with the various
CEF states are summarised in Table 5.

1.5.6 Effect of magnetic field on the charge density - a source of Magne-
tostriction

The application of a magnetic field gives also rise to a change in the 4f charge density,
which in turn may lead to magnetostriction. In order to demonstrate this effect we
show in fig. 5 the charge density of the Y b3+ ion in an applied magnetic field of 40 T
along the y axis.
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Table 5: Magnetic moments of an Yb3+ ion exposed to CEF effects described by the
CEF parameters in Table 4

.

energy level [K] Mz µB M+ µB M− µB

0 -0.42 1.71 -1.71i
0 0.42 1.71 -1.71i
39.46 -1.28 0 0
39.46 1.28 0 0
118.15 2.14 0.0017 -0.0017i
118.15 -21.14 0.0017 0.0017i
236.83 -3 -0.0017 0.0017i
236.83 3 -0.0017 -0.0017i

Table 6: Positions of point charges and crystal field parameters for an Yb3+ ion in a
hexagonal crystal field (Model B).

pointcharges (|e|) x(Å) y(Å) z(Å)

0.8 0 0 3
0.8 0 0 -3
0.8 3.4641 0 0
0.8 -3.4641 0 0
0.8 1.73205 -3 0
0.8 -1.73205 3 0
0.8 1.73205 3 0
0.8 -1.73205 -3 0

CEF parameters Bm
l

B0
2 = −0.06364 meV

B0
4 = 2.713× 10−3 meV

B0
6 = −5.5335× 10−6 meV
B6

6 = −6.659× 10−5 meV

1.5.7 Point Charge Model B

In order to show, how changes of the point charges influence the experimental results,
we evaluate also another model, with different sign and distance of point charges situ-
ated on the hexagonal axis. The point charges and the resulting crystal field parameters
are summarized in table 6.

Diagonalizing the Hamiltonian in a similar manner as was done in Eqn. 50, the
eigenstates and the eigenvalues are derived for the CEF parameters outlined in Table
6. Model B yields a rather narrow splitting with doublets at 0, 24.24, 26.86 and
55.3 K. The magnetic moment of the ground state doublet −0.995|−5/2�−0.0306|7/2�
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z               
                           

Figure 5: Model A: 4f -charge density for Yb3+ surrounded by point charges indicated
by the spheres calculated at a temperature T = 10 K and applied 40 T magnetic field
along (010).

and 0.995|5/2� + 0.0306| − 7/2� associated with Jz amounts to ±2.138 µB. Note the
significant changes in both the overall splitting and the magnetic moment of the ground
state driven by the changes of the point charges. The small separation between the first
and the second excited level gives rise to the appearance of a so called quasi-quartet.

2 Physical properties and CEF effects

In the following section we will discuss a number of physical properties, which cannot
be explained unless crystalline electric field effects are considered.

Two different scenarios have to be taken into account:

• Properties depend only on the degeneracy of the various CEF states. Examples
here are the specific heat or magnetic entropy.

• Properties depend on the degeneracy and on the matrix elements between a
certain CEF level an on the matrix elements between various CEF states, e.g.,
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Figure 6: Model B: 4f -charge density for an Yb3+ ion surrounded by point charges
indicated by the spheres calculated at the temperature T = 10 K. The CEF parameters
are taken from Table 6. The charges along the z-axis and in the hexagon are 0.8|e|.

electrical resistivity, magnetic susceptibility, isothermal magnetisation, inelastic
neturon scattering cross section.

2.1 Neutron inelastic scattering

The neutron powder cross section (unpolarized neutrons) for each crystal field transi-
tion (in [barn/ion/sr]) at a given temperature can be expressed as [14]:

dσi→k

dΩ
=

kf

ki
{
1

2
gjF (Q)}2exp(−2W )

�
h̄γe2

mc2

�2
exp(−Ei/kBT )

�
j exp(−Ej/kBT )

×

×
2

3

�

α=x,y,z

|�i|Jα
|k�|2 (72)

with the form factor F (Q) (giving there is a Q dependence), the ratio kf/ki of the
outgoing and incoming wave vector of the neutrons and the Debye Waller factor
exp(−2W (Q))

Taking into account model A with the CEF parameters given in Table 4, both
the eigenvalues and the eigenstates are derived after diagonalising the appropriate
Hamiltonian (see Eqn. 50). While the former define the energy separation between
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Figure 7: Calculated neutron spectra at different temperatures for the Yb3+ ion in a
hexagonal crystal field according to model A. The inset shows the calculated crystal
field level scheme, arrows indicate strong transition matrix elements.

levels, the latter allow to calculate the matrix elements within a certain CEF multiplet
and between the various levels. Carrying out these calculations according to Eqn. 72
and convolute the derived data with a gaussian resolution function gives calculated
neutron inelastic neutron (NIS) spectra for the hexagonal Yb compound in terms of
model A as shown in Fig. 7. At low temperature only one transition can be seen, from
the ground state to the first excited level. All other matrix elements in Eqn. 72 are
zero, hence no intensity is observed. Increasing the temperature populates thermally
excited CEF states and the neutrons can induce further transitions between excited
states as can be seen in Fig. 7.

2.2 The Schottky contribution to the specific heat

The so called Schottky contribution to the specific heat is originated from the thermal
population of the various crystal field levels and thus results from the increase of the
free energy of the system.

F =
R

�m
r=0 ∆rgr exp

�
−∆r
kBT

�

�m
r=0 gr exp

�
−∆r
kBT

� (73)

gr is the degeneracy of the r-th level, ∆r the energy difference to the ground state and
R the gas constant (R = 8.314 J/molK).
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Figure 8: Temperature dependent specific heat corresponding to a hexagonal Yb com-
pound calculated for the CEF parameters of model A (Table 4) and model B (Table
6. The sequence of numbers gives the respective CEF splitting and the degeneracy.

The specific heat can then be calculated from Eqn. 73 employing

CV,P = −T
∂2F (T )

∂T 2
|V,P = T

∂2(kBT ln Z)

∂T 2
|V (74)

where the partition function Z is defined as F = −kBT ln Z. Z represents the accessible
states at a given temperature, hence, the calorimetric technique can be considered as
a type of thermal spectrocopy. There, the heat dQ is the exciting energy absorbed by
the system. The initial state is characterised by the temperature Ti and the final one
by Tf = Ti + dT . The system remains in its final state, because it is always in thermal
equilibirium [11].

For solids, the heat capacity taken at constant pressure equals about that taken at
constant volume, i.e., CP ≈ CV .

Fig. 8 shows the crystal field contribution to the specific heat for a typical set of
CEF level splittings and typical values of the degeneracy of each level.

In particular, a 2-level system is simply described by:

CSch =
R

�
∆

kBT

�2
g exp

�
∆

kBT

�

�
1 + g exp

�
−∆
kBT

��2 . (75)

There, g is the ratio of the the excited level to that of the ground state. Some general
trends of the crystal field contribution of 2-level systems are summarised in table 7. If
the levels are well separated, the maximum in the specific heat appears roughly at half
of the splitting of the states.
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Table 7: Temperature Tmax of the maximum of the Schottky anomaly cSch and entropy
as a function of the degeneracy ratio g and crystal field splitting ∆ [11].

excitation g cmax
Sch [J/molK] Tmax/∆ entropy

Quartett → Dublett 0.5 2.00 0.448 R ln(3/2)
Dublett → Dublett 1 3.64 0.417 R ln 2
Dublett → Quartett 2 6.31 0.377 R ln 3

2.3 Magnetic entropy

Magnetic entropy is one of the most important physical quantities and can be derived
without the application of models and approximations. The magnetic entropy measures
the degrees of freedom of a particular spin system. In the most simplest scenario, an
electron spin 1/2 has two degrees of freedom, i.e, spin↑, and spin↓. The entropy
associated with the lifting of the degeneracy of these degrees of freedom derives from
the well known Boltzmann statistics and amounts to Smag = R ln 2.

From thermodynamics it is well known that the entropy S is defined as S = kB ln Z
and can be derived by integrating Cmag/T , i.e.,

Smag(T ) = S0 +
� C(T )

T
dT. (76)

Fig. 9 shows the magnetic entropy for both, model A and model B. Due to the much
smaller overall CEF splitting, R ln 4 is recovered at much lower temperatures than the
entropy of of model A, where R ln 4 is not regained well below room temperature.
If Smag(T ) exhibits regions with plateau-like dependences, a substantial splitting is
expected between levels and a steady increase of Smag(T ) refers to relatively narrow
distances between levels.

In a very general manner, the entropy well above a certain CEF level follows from
R ln(No/Ng) where No is the number of states states already populated and Ng is
the ground state degeneracy. Having populated e.g., 3 CEF doublets would result in
No = 6 and in the case of 4 doublets, coinciding with Yb in a hexagonal CEF, No = 8.
The entropy for the former is then R ln(6/2) = R ln 3, while for the latter one observes
R ln(8/2) = R ln 4, in agreement to the results of Fig. 9.

It is important to note that a contribution of a ground state doublet to the specific
heat and thus also to the magnetic entropy, depends on the availability of external
mechanisms, lifting the ground state degeneracy. Such mechanisms may be the Kondo
effect, long range magnetic order or a crystal distortion which lowers the symmetry. A
doublet as ground state does not automatically contribute R ln 2 to the entropy. Only
mechanisms like those indicated above, will generate entropy for this level!

Let us assume a Kondo interaction strenght of TK = 5 K as typical figure of Yb
intermetallics. As indicated above, this phenomenon lifts the degeneracy of the ground
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Figure 9: Temperature dependent magnetic entropy Smag corresponding to a hexagonal
Yb compound calculated for the CEF parameters of model A (Table 4) and model B
(Table 6), solid lines. The dashed lines represent the magnetic entropy after lifting
the ground state degeneracy by Kondo interaction with TK = 5 K. The sequence of
numbers gives the respective CEF splitting and the degeneracy.

state doublet and R ln 2 is regained for T � TK . Applying the Kondo effect to both
data sets in Fig. 9 shows that at sufficientyl high temperatures R ln 8 is recovered.

Fig. 10 shows the magnetic contribution to the specific heat of one of the best
studied Pr compounds, i.e, PrNi5. This hexagonal compound does not show magnetic
order, although the total angular momentum j = 4 of Pr3+ refers to a magnetic moment
M = gjj = 3.2 µB, in fact, a very large moment. The reason for the nonmagnetic
ground state is CEF splitting on the non-Kramers ion Pr3+, with the possibility to
create non-magnetic CEF states. The expression nonmagnetic should be considered
with care: In CEF physics nonmagnetic means that the sum of the matrix elements
of a certain state becomes zero. We will come back to this scenario in the chapter
concerning magnetization and susceptibility. The relevant CEF parameters Bm

l of
PrNi5 are B0

2 = 5.84 K, B0
4 = 4.53× 10−2 K, B0

6 = 8.86× 10−4 K, B6
6 = 3.14× 10−2 K.

Diagonalizing the appropriate Hamiltonian (a 9 × 9 matrix) reveals the fol-
lowing eigenvalues (in bracket is the degeneracy), numbers are rounded. Ei =
0 K[1], 24 K[1], 40 K[2], 49 K[2], 158 K[1], 333 K[2].

The eigenstates corresponding to these eigenvalues and the magnetic moments as-
sociated are (in rounded numbers): 0.71| − 3� + 0.71| + 3�, [0 µB]; 1|0�, [0 µB]; 1|1�,
[−0.8 µB]; 1|− 1�, [0.8 µB]; −0.97|− 2�+ 0.21|+ 4�, [1.38 µB]; 0.21|− 4� − 0.97|+ 2�,
[−1.38 µB]; 0.71| − 3� + 0.71| + 3�, [0 µB]; 0.97| − 4� + 0.21| + 2�, [2.98 µB];
0.21|− 2�+ 0.97| + 2�, [−2.98 µB].

The anomaly in specific heat at low temperatures is purely of CEF origin and should

32



T [K]
0 40 80

C
 [J

/m
ol

K
]

0

2

4

6

8

10

12

S
m

ag
 [J

/m
ol

K
]

0

2

4

6

8

10

12

14

16

PrNi5

Figure 10: Calculated temperature dependent specific heat C (left axis) and tempera-
ture dependent magnetic entropy Smag (right axis) of PrNi5. The CEF parameters are
given in the text.

not be confused with certain classes of phase transitions.

2.4 Magnetisation and magnetic susceptibility

To calculate magnetic properties of a single rare earth ion subjected to both the crystal
field and a magnetic field, Heff

i , the the crystal field and Zeeman Hamiltonian (77) of
the ion i has to be diagonalized together:

H = Bm
l Om

l (Ji)− gJiµBJiH
eff
i . (77)

It allows to calculate the expectation value of the angular momentum �Ji� according
to

�Ji� =
�

Γ

nΓ�Γ|Ji|Γ� (78)

with

nΓ =
exp(−EΓ/kT )

z
(79)

z =
�

Γ

exp(−EΓ/kT ) (80)
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The operator J i represents Jz and J±; z is the partition sum, |Γ� the eigenstate
corresponding to the eigenvalue EΓ of the Hamiltonian (77).

2.4.1 Isothermal Magnetisation
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hexagonal crystal structure

H para to z-axis, model B

H para. to z-axis, model A

H perp to z-axis, 
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H perp to z-axis, 
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Figure 11: Isothermal magnetization of an Yb compound (j = 7/2) with hexagonal
crystal structure at T = 0.5 K for CEF parameters of model A (Table 4) and model B
(Table 6.

We have shown in Section 1.5.5 how a magnetic moment of a certain eigenstate can
be calculated. In most of the cases, however, the eigenstates may become quite com
plicated, consisting of a linear combination of the | ± 1/2�, | ± 1�, | ± 3/2� . . . , i.e,
α| ± 1/2� + β| ± 1� + γ| ± 3/2� . . . . Formally, (α + β + γ + . . .)2 = 1. α, β . . . can
be both positive and negative. The matrix elements of all individual states have to be
summed up to generate the total magnetic moment of the system with respect to a
certain direction of the external magnetic field. Mathematically this follows from

mi = gjµB�Γi|Ji|Γi�. (81)

This value has to be calculated at each temperature and each field. Temperature
also causes that higher levels of the CEF scheme become populated and thus contribute
to the mean value of mi.

Examples of isothermal magnetisation curves are shown in Fig. 11 for the hexagonal
Yb compound with CEF parameters given in Table 4 for model A and in Table 6 for
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model B. Note that CEF splitting is responsible that the expected value M = g · j is
not reached unless very high external magnetic fields are applied which are different
for the different directions of the crystal.

The magnetic field not only causes a polarisation against thermal disorder, but
further splits degenerate levels. A triplet, for example, is lifted into 3 singlets according
to Zeeman’s law.
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Figure 12: Field dependence of the PrNi5 eigenstates. Note the lifting of the degeneracy
of states and the level crossing at about 24 T. The sequence of numbers refer to the
energies of the levels in Kelvin (rounded) and the number in brackets is the degeneracy
both at zero external fields.

A rather exciting phenomenon in this context is so called level crossing, see Fig.
12. This means, that while certain levels are shifted to higher energies as the field
strength increases, others become lowered. A consequence can be that a level with
a large magnetic moment is lowered, finally crossing the split levels of the ground
state. Isothermal magnetisation can then exhibit sharp, field induced changes of the
magnetic moment. A very famous example is already mentioned PrNi5, and field
dependent calculations of the isothermal magnetisation are shown in Fig. 13, exhibiting
a metamagnetic-like transition around 23 T, well in agreeement to experimental results.
Slight changes of the Bm

l however, can cause dramatic changes of this transition. In
real materials, however, interactions between ions may occur, which may modify final
results.
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Figure 13: Field dependent magnetisation of PrNi5 with fields applied along the x-
direction calculated at T = 0.5 K.

2.4.2 Temperature dependent susceptibility

When a magnetic field is applied along the direction α, the magnetic susceptibility
χCEF

α follows from the Van Vleck formula and can be expressed as [12],

χCEF
α =

NA(gjµB)2

�
n exp(−En/kBT )

× (82)

×
�

r,s

|�r|Jα|s�|
2 exp

�
−Er

kBT

�
exp((Er − Es)/kBT )− 1

Er − Es
.

NA is the Avogadro number, Er is the energy of the r-th state, gj is the Landé factor
and �r|Jα|s� is the matrix element between the r- and s-state of a CEF scheme.

The magnetic susceptibility χ(T ) as outlined in Eqn. 83 modifies the the simple
Curie law by taking into account both, the matrix elements between the different states
of a CEF split total angular momentum as well as the probability that a certain CEF
level is populated at a distinct temperature. Results of calculations for the hexagonal
j = 7/2 compound, model A, are shown in Fig. 14 for fields applied in the basal plane
and along the c-axis, respectively. The sum of both contributions, i.e., χ = 1/3χpara +
2/3χperp corresponds to a measurement performed on polycrystalline materials. At
very high temperatures, the slope of the averaged curve coincides with the effective
moment µeff = 4.54 µB of a free, trivalent Yb ion.

Fig. 15 shows the calculated temperature dependent susceptibility of PrNi5. Note
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Figure 14: Temperature dependent magnetic susceptibility χ of an Yb compound (j =
7/2), model A, with hexagonal crystal structure plotted as 1/chi vs. T calculated for
both field directions, i.e., H//c and H ⊥ c. The doublet CEF states are at 0, 31.3,
50.5, and 229.2 K. The sum curve, χtot = 1/3χc + 2/3χa reveals at high temperatures
the effective magnetic moment of Yb3+, µeff = 4.54 µB.

that the 1/χ plot for both directions has finite values at T = 0. This refers to a
nonmagnetic ground state - in contrast to the previous Yb compound - as a result of
CEF effects exerted to the non-Kramers ion Yb. If the ground state is magnetic, 1/χ
would diverge. Moreover, 1/χ exhibits strongly curved temperature dependences and
thus deviates from the simple Curie-like behaviour, i.e., 1/χ ∝ T .

2.5 Electrical resistivity

Scattering of electrons on ions bearing a permanent magnetic moment consists of con-
tributions due to the standard (spherical) potential, but there is additionally the in-
teraction of the conduction electron spin with the magnetic moment of the ion.

Scattering can be elastic or inelastic; in both cases, the scattering cross section and
thus the efficiency of scattering is different for spin↑ and spin↓ electrons.

If only local magnetic moments are considered, as it is almost perfectly the case
for the 4f moments of the rare earth elements, a perturbation type calculation in the
scope of the Heisenberg model

H = −J · �S · �s (83)

can be done. To be more specific, we assume that the exchange interaction between the
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Figure 15: Temperature dependent magnetic susceptibility of PrNi5 calculated for both
field directions, i.e., H//c and H ⊥ c. The sum curve, χtot = 1/3χc + 2/3χa reveals at
high temperatures the effective magnetic moment of Pr3+, µeff = 3.58 µB.

conduction electron at the site �r with spin �s and the localized magnetic ion at the site
�R with spin �S is of importance only, if the conduction electron is in the proximity of
the magnetic ion. This mathematically means one uses a δ-function, i.e., the potential
of the interaction reads

V (�r) = −J δ(�r − �R)�s�S(1/h̄2).

where J is the exchange integral or exchange constant (J has the dimension energy ×

volume). With �j = l + S it follows that �S = (g − 1)�j. Within the standard notation,
g is the Landé-factor and j the total angular momentum. Thus

V (�r) = −(1/h̄2)J (g − 1)δ(�r − �R)�s�j. (84)

Note that �s�j can be written as

�s ·�j = szJz +
1

2
(s+J− + s−J+)

A conduction electron in the state �k moving in the vicinity of the magnetic ion is
scattered by the potential given in Eqn. 84 into a new state �k�. The scattering occurs
without spin flip if the initial and the final state are connected by szJz, but a spin
flip occurs if they are connected by the terms s±J± [13]. The scattering probability is
proportional to the absolute square of matrix elements Mii�(�k → �k�) connecting initial
(i) and final (i�) states of the system.

The electrical resistivity ρ, following the Drude model can be expressed as

ρ =
3π2m

e2k3
F

1

τ(�)
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where m is the charge carrier mass, e the electron charge, kF the Fermi wave vector
and τ(�) the relaxation time. Textbooks on Transport phenomena demonstrate that

1

τ±
=

mkF

πh̄3 [
�

i,i�
Ni|Mii�(�k± → �k�

±
|
2 2

1 + exp(−Eii�/kBT )
(85)

+
�

j,j�
Nj|Mjj�(�k± → �k�

∓
|
2 2

1 + exp(−Ejj�/kBT )
]

where τ± are the relaxation times for spin up (+) and spin down (-) electrons; Eii� and
Ejj� are the energies gained by the electrons in the particular scattering process. Ni

and Nj are the number of scattering centers per unit volume producing the collision
processes.

In the absence of electric and magnetic fields, all the mj substates are degenerate
and thus they are equally probable. Eii� = Ejj� = 0 since all collisions are elastic.

The electrical resistivity for the paramagnetic temperature range T > Tord is then
calculated from:

ρmag(T ) =
3πNm∗

2h̄e2�F
|J |

2 1

4
(gj − 1)2

· j(j + 1), (86)

indicating a temperature independent expression. For T > Tord the spins are in-
dependently from each other. ρmag is determined by the so called deGennes-factor
(gj − 1)2 · j(j + 1), the coupling constant J and the effective mass m∗ of the charge
carriers.

Crystal electric fields modeled by the potential Vc, however, cause that scattering
can happen in more “channels”, represented by the various multiplets which are created
by the regularly arranged charges around the magnetic ions. This causes an increase
of the spindisorder resistivity as more and more levels become active (i.e., populated)
as the temperature increases. If the level splitting is large and the actual temperature
is well in-between, ρmag(T ) may become again temperature independent.

The matrix elements Mii� and Mjj� have now to be taken between the different CEF
states. The probability pi of a magnetic ion being in a certain CEF state with energy
Ei follows via the Boltzmann statistics from

pi =
Ni

N
=

exp(−Ei/kBT )
�

j exp(−Ej/kBT )
.

The transition between different states refers to inelastic scattering, hence, the Eii� and
Ejj� will not all be zero.

Altogether, adding the CEF effect to Eqn. 86, the electrical resistivity in presence
of CEF splitting becomes modified and may be expressed as

ρspd(T ) =
3πNm

h̄e2�F
J

2(gj − 1)2
�

ms,m�
s,i,i�
�m�

si
�
|�s�j|msi�

2pifii (87)
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Figure 16: Electrical resistivity of an Yb compound (j = 7/2) in a hexagonal crystal
structure for CEF parameters of model A (Table 4) and model B (Table 6.

ms and m�

s are the spins of the conduction electrons in the initial and the final states.
i and i� are the CEF states with energies Ei and E �

i. The matrix elements are between
the simultaneous eigenstates for the local-moment-conduction-electron system; the fii

are given by

fii� =
2

1 + exp[−(Ei − E �
i)/kBT ]

.

Note that similarly to the case of inelastic neutron scattering transition probabilities
between CEF states are of importance. Standard selection rules are such that matrix
elements have finite values only if mj → mj ± 1 (dipole exchange selection). If such
states are not available, scattering between these states will not occur, hence does not
contribute to the electrical resistivity. For temperatures high compared to the overall
CEF splitting, Eqn. 86 is recovered, resulting in a temperature independent expression.

Fig. 16 shows the remarkable influence of CEF effects on the the spindisorder
resistivity. Data from the previous hexagonal Yb compounds, model A and B are used.
The thermal population in the context of transition probabilities between CEF states
at different CEF levels originates a strong temperature dependence, which should not

be confused with e.g., T 2 dependences derived from Fermi liquid behaviour or similar
interactions!

In order to demonstrate the influence of the degeneracy of a CEF level regarding
the electrical resistivity, a simple example of an j = 5/2 in cubic symmetry is shown
in Fig. 17. A quartet as ground state, in comparison to the doublet, causes a higher
scattering rate, hence the resistivity for T → 0 is larger, as obvious from Fig. 17. Since
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Figure 17: Electrical resistivity of a cerium compound (j = 5/2) in cubic environment.
B0

4 = ±∆/360 [K] with ∆ = 100 K.

there, the overall CEF splitting ∆ = 100 K, the resistivity around room temperature
becomes almost constant.

3 Thermal Expansion and Magnetostriction

As pointed out already in the context of the Yb example, the change of temperature
and magnetic field will lead to a change in the charge density of the 4f electrons, which
in turn will influence the lattice. Fig. 18 shows the basic mechanism [15] for a simple
example.

A crystal field produced according to Coulomb’s law by two positive charges (situ-
ated above and below the rare earth). For temperatures higher than the crystal field
splitting ∆cf of the 4f ground state multiplet the 4f charge density is spherical sym-
metric (Fig. 18a left). When the temperature is lower than the crystal field splitting,
only the low energy crystal field states are thermally populated. This leads to a con-
tinuous deformation of the 4f charge density with decreasing temperature. The shape
of the deformation resembles the geometry of the crystal field, in our example the two
positive charges produce an ellipsoidal (cigar) shape. The crystal field striction arises
from the fact, that a thermally (or magnetic field induced) change of the 4f charge den-
sity shape changes the force between the 4f ion and the positive charges which produce
the crystal field. A magnetostrictive strain of the crystal lattice results as indicated by
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Figure 18: Crystal field (a-c) mechanism for magnetoelastic strains. For a description
see text.

the small arrows in Fig. 18a-right. For this magnetostrictive effect no long range order
is necessary and it is called crystal field influence on the thermal expansion [16, 17, 18].

We now consider what happens, when the system orders antiferromagnetically.
The shape of the 4f charge density is closely associated with magnetic anisotropy. In
crystal field theory this anisotropy is governed by Stevens factors αj, βj and γj [2] .
In our simple example of Fig. 18a the magnetic easy axis will be vertical, i.e. along
the revolution axis of the ellipsoid, if the sign of the Stevens factor αj is positive

(such as for Sm3+, Er3+, Tm3+, Yb3+). Conversly, if the sign of the Stevens factor
αj is negative (such as for Ce3+, Pr3+, Nd3+, Tb3+, Dy3+, Ho3+) the magnetic easy
axis will be horizontal. We consider now rare earth with negative Stevens factors αj:
Below the Néel temperature TN the magnetic moments order antiferromagnetically as
indicated by the large arrows in Fig. 18b. The deformation of the 4f charge density
already incipient above TN is increased by the appereance of the magnetic moment and
consequently leads to a spontaneous magnetostrictive effect below TN as indicated by
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the small arrows.
Due to the spin orbit coupling the orientation of the magnetic moment (easy axis)

is coupled to the orientation of the 4f charge. The application of a magnetic field
normal to the easy axis reduces the ellipsoidal deformation of the charge density and
reverses the spontaneous magnetostrictive effect. If the magnetic field is strong enough,
the charge density may even turn from an cigar shape into a pancake as shown in
Fig. 18c. In a similar way the crystal field striction can be analysed for more complex
configurations, where the shape of the charge density is more complicated.

Formally the crystal field striction can be described by considering the dependence
of the crystal field parameters on the strain � and the elastic energy Eel:

Hcf =
�

lm,i

Bm
l (i,

=
�)Om

l (Ji) (88)

Eel =
V

2

�

αβ

cαβ�α�β (89)
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Figure 19: Lattice constants of TmCu2 and nonmagnetic YCu2 determined by temper-
ature dependent powder x-ray diffraction and normalized to T=300 K.

If a magnetic field is applied, in addition the Zeman energy has to be considered:

HZe = −
�

i

gjµBJ i
�B (90)

43



Starting point for the further analysis is the Taylor expansion of the crystal field
parameters with respect to the components of the strain tensor

=
�, leading to the so-

called magnetoelastic Hamiltonian.

�

lm,i

Bm
l (i,

=
�)Om

l (Ji) ≈
�

lm,i

Bm
l (i,

=
�= 0)Om

l (Ji) +
�

lm,i

�αBm
l(α)(i)O

m
l (Ji) + · · · (91)

with the magnetoelastic constants

Bm
l(α)(i) =



∂Bm
l (i,

=
�)

∂�α





�=0

(92)

Usually the analysis is limited to the first order in the strain (harmonic approxima-
tion) and second order terms (anharmonic coupling) are neglected.

By definition the magnetic free energy is given by

Fm = −kBT ln Z (93)

with the partition sum

Z = Tr{e−H/kBT
} (94)

Here kB denotes the Boltzmann constant. In our first order approach the trace in
(94) is calculated using the states of the unperturbed system, i.e. without taking into
account the magnetoelastic interactions, by putting

=
�= 0 in (88).

Inserting the Hamiltonian H = Hcf + Eel +HZe (88) into (93) and (94), calculating
the derivative of the magnetic free energy Fm with respect to the strains �α yields the
final result

�α
cf = −

1

V

�

β,i

sαβBm
l(α)(i)�O

m
l (J i)�T, �B (95)

(96)

Eqn. (95) shows that the complete temperature and field dependence of the strains
can be calculated from thermal expectation values ��T, �B of Stevens operator equivalents
�Om

l (J i)�T, �B. The magnetoelastic constants can either be derived from theoretical
models [19] or, alternatively, enter as adjustable parameters into the theory. In principle
some evidence can also be obtained from the shift of cef excitation spectra under
pressure [20].

As an example for the crystal field striction effect we show the example TmCu2 [17].
Note in the orthorhombic symmetry there are nine crystal field parameters to be con-
sidered: B0

2 = −0.94 K, B2
2 = −1.23 K, B0

4 = −0.9 × 10−2 K, B2
4 = −0.39 × 10−2 K,
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B4
4 = −0.36× 10−2 K, B0

6 = 0.58× 10−4 K, B2
6 = 2.47× 10−4 K, B4

6 = −0.48× 10−4 K,
B6

6 = 6.31× 10−4 K.
In order to determine the influence of the crystal field, the thermal expansion mea-

sured by temperature dependent powder x-ray diffraction is compared to the non-
magnetic isostructural system YCu2. In Fig. 19 the lattice constants normalized to
T=300 K are shown for both compounds.

The crystal field contribution to the thermal expansion can be determined by taking
the difference of the strains and is shown in Fig. 20. It can be well described by the
simple model equation

�α
cf = Aα�O

0
2(J)�T + Bα�O

2
2(J)�T (97)
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Figure 20: Difference of normalized lattice constants of TmCu2 and YCu2 versus tem-
perature. The lines correspond to the results of the crystal field model for the thermal
expansion.

with A1 = 5.9 × 10−5, A2 = −1.1 × 10−4, A3 = 1.1 × 10−5, B1 = 2.1 × 10−4,
B2 = −3.9× 10−5, B3 = −6.6× 10−5.
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4 Magnetic behaviour in complex metallic alloys:
skutterudite PrFe4Sb12

Ternary skutterudites REyTM4X12 with RE = rare earth, TM = Fe, Co, Rh, Ru, . . . and
X = P, As, Sb, attracted much interest because of a variety of possible ground states
and because of their large thermoelectric potential. Depending on the particular rare
earth element, features like superconductivity as e.g., in LaRu4As12 below Tc = 10.3 K
or LaOs4As12 below Tc = 3.2 K [21], long range magnetic order in EuFe4Sb12 at Tmag =
84 K [22, 23], heavy fermion behavior in YbFe4Sb12 [24], non-Fermi-liquid in CeRu4Sb12

[25], intermediate and mixed valence behavior in Yb(Fe, Co)4Sb12 and Eu(Fe, Co)4Sb12

[26, 27] and hopping conductivity in YbRh4Sb12 [26] were already found and discussed
in some detail. Significant interest in this family of compounds, however, stems from
the fact that skutterudites are potential candidates for thermoelectric applications.
Materials considered for such a use should exhibit values for the figure of merit ZT =
S2T/(ρλ) at least of the order of one (T . . . temperature, S . . . Seebeck coefficient,
ρ . . . electrical resistivity and λ . . . thermal conductivity). Depending on the carrier
concentration of a particular skutterudite, Seebeck values above about 100 µV/K are
frequently observed. Besides, ternary skutterudites are outstanding with respect to
their low thermal conductivity which, in some cases, may be near to the theoretical
limit. As a matter of fact, the dramatically diminished λ(T ) values are associated with
an exceptionally large thermal displacement parameter of the loosely bound rare earth
elements, corresponding to a “rattling” (i.e., soft phonon mode) of these atoms in an
oversized cage [28].

a

b

c

xy

z

el.positive
element
(e.g. Pr )

Sb, (P,As)

d-element
(Fe, Co, Rh ...)

Figure 21: Crystal structure of Pr0.73Fe4Sb12.
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Specifically, PrFe4Sb12 is a cubic compound crystallizing in a body-centred cubic
lattice; the local point symmetry of Pr is Th (compare Fig. 21). As already mentioned,
Pr is a non-Kramers ion. Then, the cubic symmetry is responsible for a splitting of
the j = 4 total angular momentum of Pr3+ into a Γ1 singlet, a Γ3 doublet and in the
Γ4 and Γ5 triplets. For non-Kramers ions like Pr, nonmagnetic ground states, i.e., Γ1

and Γ3, are possible.
Very recently, however, Takegahara et al. [29] have shown that the standard CEF

Hamiltonian for simple cubic materials cannot be used for skutterudites, since systems
with point groups T and Th do not contain two types of symmetry of Oh, namely C4,
rotations through π/2 about the fourfold symmetry axis and C

�
2, Umklappung, rota-

tions through π perpendicular to the principle rotation axis. Adding these symmetry
properties reveals new six-order terms:

H∗

cub = B0
4(O

0
4 + 5O4

4) + B0
6(O

0
6 − 21O4

6) + B2
6(O

2
6 −O6

6) (98)

where the previous notation is used. While, in general, the Hamiltonian Eqn. 98
leaves the degeneracy of the CEF states unchanged (in comparison to the standard
CEF Hamiltonian for cubic symmetry), the wave functions, and thus matrix elements
and magnetic moments are modified, depending on the magnitude of the additional
six-order terms.

It is a good idea trying to obtain realistic CEF parameters Bm
l of a certain system

from neutron inelastic scattering studies. Exposing at low temperatures a certain
material to incoming neutrons within a so called triple-axis spectrometer or within a
time-of-flight spectrometer, allows figure out excitations from the ground state CEF
level to excited CEF levels. Such excitations are allowed only, if the matrix elements
between two distinct states have finite values. Once, the temperature rises, the first,
second, etc. level becomes thermally populated and new transitions between states are
possible, i.e., other matrix elements show non-vanishing values. Note that such inelastic
transitions may evolve in two different directions: neutrons may absorb energy from
the system (at higher temperatures), or loose energy after a collision with the magnetic
moment under consideration.

An evaluation of neutron inelastic scattering (NIS) data helps in general to define
the CEF levels and their splitting from the ground state. Using least squares fitting,
the CEF parameters Bm

l may be derived.
In the following subsection we will discuss the CEF scheme PrFe4Sb12 as derived

from NIS studies at the time-of-flight instrument HET at ISIS, U.K., and will use
the Bm

l data derived to describe a number of physical properties which are distinctly
governed from CEF effects.

The magnetic parts of the inelastic neutron spectra SM collected for Pr0.73Fe4Sb12

at T = 10 K, Ei = 11 meV and Ei = 40 meV are shown in Figs. 22a,b. SM is derived by
comparison with the respective data of LaFe4Sb12 [30]. The low energy excitations are
decomposed into a quasielastic line and an inelastic line centred at E1 = 2.2 meV. The
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spectrum at higher incident energy reveals additional inelastic lines at E2 = 10.7 meV
and E3 = 16.8 meV.
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Figure 22: Energy dependent magnetic scattering intensity SM of Pr0.73Fe4Sb12. (a):
T = 10 K, Ei = 11 meV; (b): T = 10 K, Ei = 40 meV. The solid, dashed, dashed-dot
and dashed-dot-dot lines describe the sum, elastic, quasielastic, and inelastic contribu-
tions, respectively.

Considering the experimentally observed values of inelastic CEF excitations in the
context of Eqn. 98, a set of CEF parameters is obtained: B0

4 = 0.03712 K, B0
6 =

0.00125 K and B2
6 = 0.001 K, matching the estimated parameters B0

4 = 0.04 K and
B0

6 = 0.00133 K derived, when only a simple cubic Hamiltonian is considered [31].
These values determine the wave functions of the various eigenstates and cause the
triplet Γ(2)

4 to be the ground state of the system. Γ(2)
4 , which in the simple version of

the Hamiltonian corresponds to the triplet Γ5, possesses a magnetic moment and thus
can give rise to an ordered ground state. In fact, various bulk properties of Pr0.73Fe4Sb12

indicate ordering below about 4.6 K [31, 32]. The singlet Γ1 is situated 25.8 K above
the ground state. Additionally, the strong quasielastic peak (compare Fig. 22) would
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favour a triplet state, while an absence of this contribution would be in line with a
singlet ground state.

Differences between the appropriate Hamiltonian for skutterudites (Eqn. 98) and
the standard Hamiltonian for cubic systems (comapre e.g. Eqn. 37) are small e.g., for
thermodynamic quantities like the specific heat, but have severe consequences for prop-
erties like the neutron inelastic scattering, where the intensity of a distinct transition
depends on the square of the appropriate matrix element, i.e. |�Γi|Jz|Γj�|

2, where Γi

and Γj represent the initial and the final CEF state, respectively. If this matrix element
vanishes, a transition will likely not occur, and no neutron inelastic scattering intensity
(in general a Lorentzian line) will be found centered at an energy ∆ = ∆(Γj)−∆(Γi).

The fact that a singlet state Γ1 is observed roughly 25 K above the magnetic
ground state triplet in Pr0.73Fe4Sb12 would not be accounted for by the Hamiltonian
Eqn. 37, where |�Γ5|Jz|Γ1�|

2 = 0. Within the dipole selection rules, the eigenstates of
both CEF level are not bridged by mj = ±1. On the contrary, taking into account
the Hamiltonian for Skutterudites, Eqn. 98, a finite matrix element is found, i.e.,
|�Γ2

4|Jz|Γ1�|
2 �= 0, thus intensity may be observed, as it is obvious from Fig. 22.

Differences regarding the resulting CEF schemes of both CEF Hamiltonians applied to
Pr0.73Fe4Sb12 are sketched in Fig. 23.
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Figure 23: CEF scheme of Pr0.73Fe4Sb12 derived from both Hamiltonians Eqn. 98 (left)
and Eqn. 37 (right).

Results of magnetic susceptibility measurements performed on Pr0.73Fe4Sb12 are
shown in Figs. 24 (a,b). The Curie-Weiss like behavior at elevated temperatures (T >
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50 K) reveals an effective magnetic moment µeff = 4.19 µB, as well as a paramagnetic
Curie temperature θp ≈ 0.5 K. In order to match the theoretical rare earth moments
associated with a 3+ state of the Pr ion, a significant contribution to µeff of the
[Fe4Sb12] sublattice is required. Assuming that both the rare earth and the [Fe4Sb12]
contribution to µeff are simply additive, i.e.,

µmeas.
eff =

�
y

�
µPr

eff

�2
+

�
µ[Fe4Sb12]

eff

�2
(99)

(y is the void filling factor) yields an effective magnetic moment for [Fe4Sb12] of 2.7 µB.
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Figure 24: (a): Temperature dependent magnetic susceptibility χ of Pr0.73Fe4Sb12

and Nd0.72Fe4Sb12 plotted as χ−1 vs. T . The solid circles represent the Pr-related
susceptibility and the solid line is a least squares fit according to Eqn. 2. The inset
shows the low temperature behavior in more detail. (b): χa.c.(T ) of Pr0.73Fe4Sb12 and
Nd0.72Fe4Sb12.

A closer inspection of the low temperature data and of the a.c. measurement
(Fig. 24(b)) indicates an onset of long range magnetic order. Defining the transition
temperature of Pr0.73Fe4Sb12 in a standard manner, i.e., by taking the extremum in
dχdcT/dT as well as the temperature at half height of the a.c. susceptibility anomaly
on the paramagnetic side reveals Tmag ≈ 4.6 K. The sharp transition and the overall
behavior of χa.c.(T ) does not exclude a ferromagnetic ground state.

To fix the contribution originated by Pr, the susceptibility associated with [Fe4Sb12]
is subtracted from the total measured set of data assuming a simple Curie behavior
and taking into account µeff ([Fe4Sb12]) = 2.7µB. The thus modified 1/χ(T ) curve is
added in Fig. 24 (a).

The susceptibility χ(T ) related to Pr in Pr0.73Fe4Sb12 is analyzed in terms of

1/χ = 1/χCEF − λ (100)
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where χCEF is the susceptibility due to crystal field effects and λ is the molecular field
parameter caused by exchange interactions between the Pr ions. Note a substantially
large value of λ originates a magnetic instability of a certain system.

Taking into account the CEF parameters Bm
l derived from the NIS study, in the

context of Eqn. 83 allows the calculation of χCEF (T ) as well as of χ(T ) by adjusting
λ. A reasonable fit of the experimental data is obtained for λ = 6 mol/emu. Results
of the calculation are shown in Fig. 24(a) as solid line. In particular, the pronounced
curvature in 1/χ(T ) around 25 K is well reproduced (compare inset, Fig. 24 (a)) and
the overall susceptibility behaviour matches fairly well the experiment.

Associated with the Γ2
4 triplet ground state is a magnetic moment of µ = 2 µB.

This finding is consistent with the occurrence of magnetic order and moreover explains
the magnitude of the isothermal magnetization at T = 2 K.
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Figure 25: Temperature dependent magnetization of Pr0.73Fe4Sb12 for various values
of externally applied magnetic fields. The solid lines are theoretical values (see text).

Magnetization measurements performed up to 15 T are an additional possibility to
consider crystal field effects and to corroborate the set of the CEF parameters chosen.
Plotted in Fig. 25 is the temperature dependent magnetization for various values of
applied magnetic fields. The solid lines are calculations of the magnetization based on
Eqn. 98 with gj = 4/5, j = 4, and the above indicated CEF parameters, revealing
reasonable agreement with the experimental data. Note, there is no extra adjustable
parameter used in this calculation.

Shown in Fig. 26is the temperature dependent electrical resistivity ρ(T ) of
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Figure 26: Normalized resistivity of Pr0.73Fe4Sb12. The solid line represents the CEF
derived spindisorder resistivity as derived from the CEF parameters of Pr0.73Fe4Sb12.

Pr0.73Fe4Sb12. The compound behave metallic, i.e., ρ(T ) increases with rising temper-
ature. The particular temperature dependence, however, deviates significantly from
a simple metal and is characteristic for materials having a reduced number of charge
carriers. At low temperatures, the weak anomaly in Pr0.73Fe4Sb12 indicates the onset
of long range magnetic order at 4.6 K.

To account for the strongly curved ρ(T ) behavior of Pr0.73Fe4Sb12, at least in the
lower temperature range (T < 100 K), the spin disorder resistivity ρspd is considered,
i.e., scattering of conduction electrons on disordered magnetic moments, in combination
with CEF effects, compare Eqn. 87.

Using the already derived CEF parameters the normalized spin disorder contribu-
tion to the electrical resistivity can be calculated without any further free parameters.
Results of this calculation are shown in Fig. 26, together with the resistivity data of
Pr0.73Fe4Sb12 normalized to 100 K. Except at low temperatures, where Pr0.73Fe4Sb12

exhibits a phase transition (Tmag = 4.6 K), the peculiar structure of ρ(T ) is well repro-
duced by this choice of CEF parameters.
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5 Summary and Outlook

Subjects which could not be touched in this chapter should be briefly mentioned. There
is on one hand the extension of the theory to include higher multiplets, such as neces-
sary for example in the case of Sm and Eu [33]. Moreover, in some peculiar cases the
crystal field may be influenced significantly by optical phonons propagating through
the crystal. Such a situation is described by a large crystal field phonon interaction [34],
which produces usually a strong damping and consequently increased linewidth of the
crystal field excitations spectra. Similar, there may be a strong coupling to the con-
duction electrons resulting also in increased linewidth effects [35]. Moreover, such
couplings may result in a temperature dependence of the crystal field excitation ener-
gies [36]. In very special cases a strong crystal field phonon coupling may lead to bound
states, which have partly crystal field and partly phonon character with a characteristic
anticrossing in the dispersion relation [37].

If the crystal field ground state is degenerate it may couple strongly to some lat-
tice strain and below a characteristic temperature the system may lower its lattice
symmetry thus lifting the degeneracy of the cf ground state. Such a Jahn Teller ef-
fect is often observed, when there are no significant two ion interactions present [38].
However, in most rare earth systems, two ion interactions are dominant and lead to
long range order. The two ion interactions in the simplest case are isotropic and bilin-
ear, such as for instance the direct (Heisenberg) exchange interaction and the indirect
exchange interactions (RKKY, superexchange etc.). In many cases there is strong evi-
dence for anisotropic bilinear interactions [39], such as the classical dipolar interaction,
anisotropic exchange or the completely antisymmetric Dzyaloshinski-Moriya interac-
tion. In many cases the bilinear interactions scale with the de’Gennes factor. When this
factor is small, as for example in the case of Pr and Tm, other types of two ion inter-
actions may become dominant, such as for example the quadrupolar interactions [38].
The Jahn Teller effect in this view is driven by such an effective quadrupolar inter-
action. However, there exist also ”true” two ion quadrupolar or orbital interactions,
which are not coupled to a strong lattice distortion. The static behavior of the ordered
states can be extremely complex and is usually treated in mean field theory [40].

Any two ion interaction will influence not only the static behavior of the system,
but also modify the excitation spectrum. If only the crystal field interaction is present,
the magnetic modes do not show any dispersion and the main effect of two ion inter-
actions is to produce dispersion in the magnetic excitations. This dispersion can be
calculated from the Fourier transform of the two ion interactions within the random
phase approximation [40, 41]. If the crystal field interaction is weak compared to the
bilinear (quadrupolar, orbital) interaction the corresponding dispersive excitations are
usually called magnons (orbitons).

For a quantitative analysis of the crystal field, software programs have been devel-
oped. The most popular program is probably cfield, which is a part of the McPhase

53



package [42] 3. McPhase is a modeling suite for complex problems in magnetism, which
allows the quantitative evaluation of most of the effects described above, i.e. long range
order, dispersion of excitations [39] etc. As a result of such a modeling exchange and
crystal field parameters can be quantitatively determined. Moreover, by a quantita-
tive analysis in some cases clear discrepancies between the predictions of the standard
model of rare earth magnetism and the experimental data have been identified. As
examples we mention (i) the discovery of additional excitations in CeCu2, which are
not allowed by symmetry [43]; (ii) the discovery of the magnetoelastic paradox in Gd
based compounds [44, 45]. These examples demonstrate, that the numerical evalua-
tion of models in magnetism allows to confront theoretical concepts with experimental
observations. Discrepancies between experiment and theory, wich become evident in
this way will help to improve our understanding of magnetism.

Computing programs for multiplet mixing and optical spectra

SPECTRA - for optical CEF spectra http://chemistry.anl.gov/downloads/spectra/ 1.
B.Z. Malkin, in Spectroscopy of Solids Containing Rare Earth Ions, Ed. By A. A.
Kaplyanskii and R. M. MacFarlane, Ch.2, 13 ( North-Holland, Amsterdam, 1987). 2.
W. T. Carnall, J. Chem. Phys., 96, 8713 (1992). 3. B. R. Judd, Phys. Rev. 141, 4-14
(1966). 4. H. Crosswhite, H. M. Crosswhite and B. R. Judd, Phys. Rev. 174, 89-94
(1968). 5. H. H. Marvin, Phys. Rev. 71, 102 (1947). 6. B. R. Judd, H. M. Crosswhite,
and H. Crosswhite, Phys. Rev. 169, 130 (1967). 7. R. Storn and K. Price, J. Global
Optimization, 11, 341(1997).

Recommended Textbooks

1. R. D. Cowan, The Theory of Atomic Structure and Spectra (University of Cal-
ifornia Press, Berkeley, 1981). 2. C. W. Nielson and G. F. Koster, Spectroscopic
Coefficients for the pn, dn, and fn Configurations (MIT Press, Cambridge, 1963). 3.
B. G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, New York,
1965). 4. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer, Berlin,
1992), 2nd ed. 5. S.Hufner, Optical Spectra of Transparent Rare Earth Compounds
(Academic Press, 1978). 6. B.R. Judd, Operator Techniques in Atomic Spectroscopy
(Princeton University Press, 1998).
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A Stevens Operators

The appendix summarises all Stevens operators and the tesseral harmonics.
X = J(J + 1)

O0
0 = 1

O−1
1 =

−i

2
[J+ − J−] = Jy

O0
1 = Jz

O1
1 =

1

2
[J+ + J−] = Jx

O−2
2 =

−i

2
[J2

+ − J2
−
] = JxJy + JyJx = 2Pxy

O−1
2 =

−i

4
[Jz(J+ − J−) + (J+ − J−)Jz] =

1

2
[JyJz + JzJy] = Pyz

O0
2 = [3J2

z −X]

O1
2 =

1

4
[Jz(J+ + J−) + (J+ + J−)Jz] =

1

2
[JxJz + JzJx] = Pxz

O2
2 =

1

2
[J2

+ + J2
−
] = J2

x − J2
y

O−3
3 =

−i

2
[J3

+ − J3
−
]
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3 =
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4
[(J2

+ − J2
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2
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−
)]
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